Pervilleine A, a novel tropane alkaloid that reverses the multidrug-resistance phenotype
P-Glycoprotein-mediated drug efflux can yield a multidrug-resistance (MDR) phenotype that is associated with a poor response to cancer chemotherapy. Pervilleine A, a novel tropane alkaloid obtained from a chloroform extract of Erythroxylum pervillei as the result of bioactivity-guided fractionation,...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2001-05, Vol.61 (10), p.4030-4037 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P-Glycoprotein-mediated drug efflux can yield a multidrug-resistance (MDR) phenotype that is associated with a poor response to cancer chemotherapy. Pervilleine A, a novel tropane alkaloid obtained from a chloroform extract of Erythroxylum pervillei as the result of bioactivity-guided fractionation, was found to restore the vinblastine sensitivity of cultured multidrug-resistant KB-V1 and CEM/VLB(100) cells, with IC(50) values of 0.36 and 0.02 microM, respectively. Similarly, the chemosensitivity of KB-8-5 cells to colchicine was restored with an IC(50) value of 0.61 microM. The mechanism of this response was evaluated with a number of model systems. First, incubation of multidrug-resistant KB-V1 and CEM/VLB(100) cells with up to 45 microM pervilleine A for 72 h did not significantly affect either the transcription of MDR1, as revealed by reverse transcriptional-PCR-based analysis of MDR1 mRNA, or levels of P-glycoprotein, as shown by Western blots. ATP-dependent binding of [(3)H]vinblastine observed with isolated multidrug-resistant KB-V1 cell membrane vesicles was inhibited by pervilleine A in a dose-dependent manner, and kinetic analysis indicted competitive inhibition with respect to vinblastine binding with a K(i) of 7.3 microM. Consistent with this effect, intracellular accumulation of [(3)H]vinblastine was increased from 0.18 pmol [(3)H]vinblastine/50 x 10(4) cells to approximately 5 pmol [(3)H]vinblastine/50 x 10(4) cells in the presence of 40 microM pervilleine A. To explore the potential relevance of these responses, KB-V1 or KB-8-5 cells were placed in hollow fibers and implanted into NCr nu/nu mice. Cell growth was not significantly inhibited when vinblastine or pervilleine A were administered as single agents, but when used in combination, inhibition of up to 75% was observed. Equimolar doses of verapamil were less effective. These data suggest that pervilleine A is an effective inhibitor of P-glycoprotein and should be further evaluated for clinical utility. |
---|---|
ISSN: | 0008-5472 1538-7445 |