Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I
A problem in mapping the polar sea-ice covers in both hemispheres has been the sporadic false indication of sea ice over the open ocean and at the ice edge. These spurious sea-ice concentrations result from variations in sea-surface roughening by surface winds, atmospheric water vapor and both preci...
Gespeichert in:
Veröffentlicht in: | Journal of glaciology 1995, Vol.41 (139), p.455-464 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A problem in mapping the polar sea-ice covers in both hemispheres has been the sporadic false indication of sea ice over the open ocean and at the ice edge. These spurious sea-ice concentrations result from variations in sea-surface roughening by surface winds, atmospheric water vapor and both precipitating and non-precipitating liquid water. This problem was addressed for sea-ice concentrations derived from the Nimbus-7 scanning multi-channel microwave radiometer (SMMR) data through the development of a weather filter based on spectral information from the 18.0 and 37.0 GHz vertical polarization SMMR channels. Application of a similar filter for use with sea-ice concentration maps derived with the special-sensor microwave imager (SSM/I) sensor is less successful. This results from the position of the 19.35 GHz SSM/I channels, which are closer to the center of the 22.2 GHz atmospheric water-vapor line than are the SMMR 18.0 GHz channels. Thus, the SSM/I 19.35 GHz channels are more sensitive to changes in atmospheric water vapor, which results in greater contamination problems. An additional filter has been developed, based on a combination of the 19.35 and 22.2GHz. SSM/I channels. Examples of the effectiveness of the new filter are presented and limitations are discussed. |
---|---|
ISSN: | 0022-1430 1727-5652 |
DOI: | 10.3189/S0022143000034791 |