The Behavior and Acrosomal Status of Mouse Spermatozoa In Vitro, and Within the Oviduct During Fertilization after Natural Mating
Although 90%-100% of mouse oocytes can be fertilized in vitro with capacitated spermatozoa within 1 h after insemination, oocytes within the oviduct are fertilized one by one over a period of several hours. In vitro experiments showed that both acrosome-intact and acrosome-reacted spermatozoa entere...
Gespeichert in:
Veröffentlicht in: | Biology of reproduction 2016-09, Vol.95 (3), p.50-50 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although 90%-100% of mouse oocytes can be fertilized in vitro with capacitated spermatozoa within 1 h after insemination, oocytes within the oviduct are fertilized one by one over a period of several hours. In vitro experiments showed that both acrosome-intact and acrosome-reacted spermatozoa entered the cumulus oophorus, but that acrosome-reacted spermatozoa reached the surface of oocytes more readily than acrosome-intact spermatozoa. During the period of fertilization within the oviduct, acrosome-reacted spermatozoa were seen throughout the isthmus, but with higher incidence in the upper than in the mid- and lower segments of the isthmus. Very few spermatozoa were present in the ampulla, and almost all were acrosome reacted. Although the cumulus oophorus and zona pellucida are known to be able to induce or facilitate the acrosome reaction of spermatozoa, this picture makes it likely that almost all fertilizing mouse spermatozoa within the oviduct begin to react before ascending from the isthmus to the ampulla. We witnessed a reacted spermatozoon that stayed on the zona pellucida of a fertilized oocyte for a while; it then moved out of the cumulus before reaching the zona pellucida of the nearby unfertilized oocyte. We noted that only a few spermatozoa migrate from the isthmus to the ampulla during the progression of fertilization, and this must be one of the reasons why we do not see many spermatozoa swarming around a single oocyte during in vivo fertilization. |
---|---|
ISSN: | 0006-3363 1529-7268 |
DOI: | 10.1095/biolreprod.116.140400 |