Topological Aspects of Symmetry Breaking in Triangular-Lattice Ising Antiferromagnets

Using a specially designed Monte Carlo algorithm with directed loops, we investigate the triangular lattice Ising antiferromagnet with coupling beyond the nearest neighbors. We show that the first-order transition from the stripe state to the paramagnet can be split, giving rise to an intermediate n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2016-05, Vol.116 (19), p.197201-197201, Article 197201
Hauptverfasser: Smerald, Andrew, Korshunov, Sergey, Mila, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a specially designed Monte Carlo algorithm with directed loops, we investigate the triangular lattice Ising antiferromagnet with coupling beyond the nearest neighbors. We show that the first-order transition from the stripe state to the paramagnet can be split, giving rise to an intermediate nematic phase in which algebraic correlations coexist with a broken symmetry. Furthermore, we demonstrate the emergence of several properties of a more topological nature such as fractional edge excitations in the stripe state, the proliferation of double domain walls in the nematic phase, and the Kasteleyn transition between them. Experimental implications are briefly discussed.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.116.197201