Multifilamentary Nb sub(3)Sn Wires Fabricated Through Internal Diffusion Process Using Brass Matrix

New multifilamentary Nb sub(3)Sn wires have been fabricated through an internal diffusion process using brass matrix. Brass has not only good elongation characteristics but also high yield strength more than double compared with Cu. Electron probemicroanalysis results show good interdiffusion betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2016-04, Vol.26 (3), p.1-4
Hauptverfasser: Banno, Nobuya, Miyamoto, Yasuo, Tachikawa, Kyoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New multifilamentary Nb sub(3)Sn wires have been fabricated through an internal diffusion process using brass matrix. Brass has not only good elongation characteristics but also high yield strength more than double compared with Cu. Electron probemicroanalysis results show good interdiffusion between Sn and brass during the heat treatment. Zn remains homogeneously in the matrix after the Nb sub(3)Sn synthesis, expecting improvement of the mechanical strength of the wire. High mechanical strength would be preferable, particularly for react & wind magnet applications. Moreover, Zn seems effective to accelerate the Nb sub(3)Sn synthesis. The Nb sub(3)Sn layer in the brass matrix sample is more than 60% thicker than that in the reference Cu matrix sample. The thicker Nb sub(3)Sn layer accounts for the higher critical current density $J_{c}$ of the brass matrix sample. The $B_{c2}$ of the wire is estimated to be about 25.5 T at 4.2 K. The volumetric ratio of Nb, Sn and Cu-Zn matrix has not yet optimized in terms of $J_{c}$ characteristics. The grain morphology of the Nb sub(3)Sn layer exhibits almost no difference between brass and Cu matrix samples. In order to improve the non-Cu $J_{c}$ characteristics, a newly designed wire has been developed.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2016.2531123