Three-body force for baryons from the D0-D4/D8 brane matrix model

This is an extensive work to our previous paper [S. Li and T. Jia, Matrix model and holographic baryons in the D0-D4 background, Phys. Rev. D 92, 046007 (2015)] that studied the D0-D4/D8 holographic system. We compute the three-body force for baryons with the D0-D4/D8 matrix model derived in [S. Li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-03, Vol.93 (6), Article 065051
Hauptverfasser: Li, Si-wen, Jia, Tuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is an extensive work to our previous paper [S. Li and T. Jia, Matrix model and holographic baryons in the D0-D4 background, Phys. Rev. D 92, 046007 (2015)] that studied the D0-D4/D8 holographic system. We compute the three-body force for baryons with the D0-D4/D8 matrix model derived in [S. Li and T. Jia, Matrix model and holographic baryons in the D0-D4 background, Phys. Rev. D 92, 046007 (2015)] with considering the nonzero QCD vacuum. We obtain the three-body force at short distances but modified by the appearance of the smeared D0-branes, i.e., considering the effects from the nontrivial QCD vacuum. We first test our matrix model in the case of 't Hooft instanton and then in two more realistic cases: (1) three-neutrons with averaged spins and (2) proton-proton-neutron (or proton-neutron-proton). The three-body potential vanishes in the former case while in the two latter cases it is positive, i.e., repulsive and makes sense only if the constraint for stable baryonic state is satisfied. We require all the baryons in our computation aligned on a line. These may indicate that the cases in dense states of neutrons such as in neutron stars, Helium-3 or Tritium nucleus all with the nontrivial QCD vacuum.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.93.065051