A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy

In current work highly sensitive and stable electrochemical sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is constructed based on the hierarchical nanoporous (HNP) PtTi alloy. The HNP-PtTi alloy is simply fabricated by two-step dealloying process, charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2016-08, Vol.82, p.119-126
Hauptverfasser: Zhao, Dianyun, Yu, Guolong, Tian, Kunlong, Xu, Caixia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In current work highly sensitive and stable electrochemical sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is constructed based on the hierarchical nanoporous (HNP) PtTi alloy. The HNP-PtTi alloy is simply fabricated by two-step dealloying process, characterized by the bimodal ligament/pore size distributions and interconnected hollow channels. The HNP structure with the advantages of large surface area, excellent structure stability, and rich pore channels is used for facilitating the electron conductivity and the mass transfer. Combined with the dual effects of the bimodal nanoporous architecture and the excellent electrocatalytic activity of PtTi alloy, the constructed sensor exhibits high electrochemical sensing activity with wide linear responses from 0.2 to 1mM, 0.004 to 0.5mM, and 0.1 to 1mM for simultaneous detection of AA, DA, and UA, respectively. In addition, HNP-PtTi alloy also shows long-term sensing stability towards the AA, DA, and UA detection and behaves as a good anti-interference towards NaCl, KCl, FeCl3, CuCl2, AlCl3, glucose, and H2O2. The HNP-PtTi alloy manifests intriguing application potential as the candidate for the application of the electrochemical sensor for simultaneous detection of AA, DA, and UA. •HNP-PtTi alloy is successfully fabricated by the two-step dealloying method.•The HNP structure is used for promoting electron conductivity and mass transfer.•The sensor is built combining both the advantages of HNP structure and PtTi alloy.•HNP-PtTi is highly sensitive for simultaneous determination of AA, DA, and UA.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2016.03.074