Ranking decision-making units using common weights in DEA
Data envelopment analysis (DEA) is a linear programming technique that is used to measure the relative efficiency of decision-making units (DMUs). Liu et al. (2008) [13] used common weights analysis (CWA) methodology to generate a CSW using linear programming. They classified the DMUs as CWA-efficie...
Gespeichert in:
Veröffentlicht in: | Applied mathematical modelling 2014-08, Vol.38 (15-16), p.3890-3896 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Data envelopment analysis (DEA) is a linear programming technique that is used to measure the relative efficiency of decision-making units (DMUs). Liu et al. (2008) [13] used common weights analysis (CWA) methodology to generate a CSW using linear programming. They classified the DMUs as CWA-efficient and CWA-inefficient DMUs and ranked the DMUs using CWA-ranking rules. The aim of this study is to show that the criteria used by Liu et al. are not theoretically strong enough to discriminate among the CWA-efficient DMUs with equal efficiency. Moreover, there is no guarantee that their proposed model can select one optimal solution from the alternative components. The optimal solution is considered to be the only unique optimal solution. This study shows that the proposal by Liu et al. is not generally correct. The claims made by the authors against the theorem proposed by Liu et al. are fully supported using two counter examples. |
---|---|
ISSN: | 0307-904X |
DOI: | 10.1016/j.apm.2013.08.029 |