Range Extension Autonomous Driving for Electric Vehicles Based on Optimal Velocity Trajectory Generation and Front-Rear Driving-Braking Force Distribution
Electric vehicles (EVs) have been intensively studied over the past decade, owing to their environmentally-friendly characteristics. However, the miles-per-charge of typical EVs is lower than the cruising range of typical internal combustion engine vehicles. To increase miles-per-charge, the authors...
Gespeichert in:
Veröffentlicht in: | IEEJ JOURNAL OF INDUSTRY APPLICATIONS 2016-01, Vol.5 (3), p.228-235 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electric vehicles (EVs) have been intensively studied over the past decade, owing to their environmentally-friendly characteristics. However, the miles-per-charge of typical EVs is lower than the cruising range of typical internal combustion engine vehicles. To increase miles-per-charge, the authors' research group has proposed a series of control systems, including Range Extension Control Systems (RECS) and Range Extension Autonomous Driving (READ) systems. In this paper, by considering the load transfer, slip ratio, motor losses, a READ system is proposed that optimizes the velocity trajectory and the front and rear driving-braking force distribution ratio; these techniques help reduce the consumption energy of the autonomous vehicle. The effectiveness of the proposed method is verified by simulations and experiments. |
---|---|
ISSN: | 2187-1094 2187-1108 |
DOI: | 10.1541/ieejjia.5.228 |