RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure

The unknown nature of ‘dark energy’ motivates continued cosmological tests of large-scale gravitational physics. We present a new consistency check based on the relative amplitude of non-relativistic galaxy peculiar motions, measured via redshift-space distortion, and the relativistic deflection of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-03, Vol.456 (3), p.2806-2828
Hauptverfasser: Blake, Chris, Joudaki, Shahab, Heymans, Catherine, Choi, Ami, Erben, Thomas, Harnois-Deraps, Joachim, Hildebrandt, Hendrik, Joachimi, Benjamin, Nakajima, Reiko, van Waerbeke, Ludovic, Viola, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The unknown nature of ‘dark energy’ motivates continued cosmological tests of large-scale gravitational physics. We present a new consistency check based on the relative amplitude of non-relativistic galaxy peculiar motions, measured via redshift-space distortion, and the relativistic deflection of light by those same galaxies traced by galaxy–galaxy lensing. We take advantage of the latest generation of deep, overlapping imaging and spectroscopic data sets, combining the Red Cluster Sequence Lensing Survey, the Canada–France–Hawaii Telescope Lensing Survey, the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. We quantify the results using the ‘gravitational slip’ statistic E G, which we estimate as 0.48 ± 0.10 at z = 0.32 and 0.30 ± 0.07 at z = 0.57, the latter constituting the highest redshift at which this quantity has been determined. These measurements are consistent with the predictions of General Relativity, for a perturbed Friedmann–Robertson–Walker metric in a Universe dominated by a cosmological constant, which are E G = 0.41 and 0.36 at these respective redshifts. The combination of redshift-space distortion and gravitational lensing data from current and future galaxy surveys will offer increasingly stringent tests of fundamental cosmology.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stv2875