Aid decision algorithms to estimate the risk in congenital heart surgery
Highlights • We propose an alternative system for classifying the risk in paediatric congenital heart surgery. • Four methods are tested: a perceptron multilayer, self-organising maps, a radial basis function neural network and decision trees. • We obtain an accuracy of 99.87% (using pre and post-su...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2016-04, Vol.126, p.118-127 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highlights • We propose an alternative system for classifying the risk in paediatric congenital heart surgery. • Four methods are tested: a perceptron multilayer, self-organising maps, a radial basis function neural network and decision trees. • We obtain an accuracy of 99.87% (using pre and post-surgical data) and 83% (using just pre-surgical data). |
---|---|
ISSN: | 0169-2607 1872-7565 |
DOI: | 10.1016/j.cmpb.2015.12.021 |