Aid decision algorithms to estimate the risk in congenital heart surgery

Highlights • We propose an alternative system for classifying the risk in paediatric congenital heart surgery. • Four methods are tested: a perceptron multilayer, self-organising maps, a radial basis function neural network and decision trees. • We obtain an accuracy of 99.87% (using pre and post-su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2016-04, Vol.126, p.118-127
Hauptverfasser: Ruiz-Fernández, Daniel, Monsalve Torra, Ana, Soriano-Payá, Antonio, Marín-Alonso, Oscar, Triana Palencia, Eddy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights • We propose an alternative system for classifying the risk in paediatric congenital heart surgery. • Four methods are tested: a perceptron multilayer, self-organising maps, a radial basis function neural network and decision trees. • We obtain an accuracy of 99.87% (using pre and post-surgical data) and 83% (using just pre-surgical data).
ISSN:0169-2607
1872-7565
DOI:10.1016/j.cmpb.2015.12.021