PCA-based Polling Strategy in Machine Learning Framework for Coronary Artery Disease Risk Assessment in Intravascular Ultrasound: A Link between Carotid and Coronary Grayscale Plaque Morphology

Highlights • Coronary artery disease risk assessment in intravascular ultrasound. • A link between carotid and coronary grayscale plaque morphology. • Principal component analysis (PCA) for dominant feature selection. • Classification accuracy of 98.43% and reliability index of 97.32%.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2016-05, Vol.128, p.137-158
Hauptverfasser: Araki, Tadashi, MD, Ikeda, Nobutaka, MD, Shukla, Devarshi, BTech, Jain, Pankaj K., B.E, Londhe, Narendra D., PhD, Shrivastava, Vimal K., M.Tech, Banchhor, Sumit K., MTech, Saba, Luca, MD, Nicolaides, Andrew, PhD, Shafique, Shoaib, MD, Laird, John R., MD, Suri, Jasjit S., PhD, MBA, Fellow AIMBE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highlights • Coronary artery disease risk assessment in intravascular ultrasound. • A link between carotid and coronary grayscale plaque morphology. • Principal component analysis (PCA) for dominant feature selection. • Classification accuracy of 98.43% and reliability index of 97.32%.
ISSN:0169-2607
1872-7565
DOI:10.1016/j.cmpb.2016.02.004