Electronic transport and localization in nitrogen-doped graphene devices using hyperthermal ion implantation

Hyperthermal ion implantation offers a controllable method of producing high-quality substitutionally doped graphene with nitrogen, an n-type dopant that has great potential for graphene electronics and spintronics applications where high carrier concentration, uniform doping, and minimal vacancy de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-04, Vol.93 (16), Article 161409
Hauptverfasser: Friedman, Adam L., Cress, Cory D., Schmucker, Scott W., Robinson, Jeremy T., van ‘t Erve, Olaf M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyperthermal ion implantation offers a controllable method of producing high-quality substitutionally doped graphene with nitrogen, an n-type dopant that has great potential for graphene electronics and spintronics applications where high carrier concentration, uniform doping, and minimal vacancy defect concentration is desired. Here we examine the transport properties of monolayer graphene sheets as a function of implantation beam energy and dose. We observe a transition from weak to strong localization that varies as a function of carrier concentration. For nominally equivalent doses, increased N ion energy results in an increasing magnetoresistance magnitude, reaching a value of approximately -5.5% at 5000 Oe, which we discuss in the context of dopant concentration and defect formation. We use a model for the temperature dependence of the conductivity that takes into account both temperature activation, due to the formation of a transport gap, and Mott variable-range hopping, due to the formation of defects, to further study the electronic properties of the doped films as a function of dose and N ion energy. We find that the temperature activation component dominates the behavior.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.93.161409