A Feynman–Kac–Itô formula for magnetic Schrödinger operators on graphs

In this paper we prove a Feynman–Kac–Itô formula for magnetic Schrödinger operators on arbitrary weighted graphs. To do so, we have to provide a natural and general framework both on the operator theoretic and the probabilistic side of the equation. On the operator side we identify a very general cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2016-06, Vol.165 (1-2), p.365-399
Hauptverfasser: Güneysu, Batu, Keller, Matthias, Schmidt, Marcel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove a Feynman–Kac–Itô formula for magnetic Schrödinger operators on arbitrary weighted graphs. To do so, we have to provide a natural and general framework both on the operator theoretic and the probabilistic side of the equation. On the operator side we identify a very general class of potentials that allows the definition of magnetic Schrödinger operators. On the probabilistic side, we introduce an appropriate notion of stochastic line integrals with respect to magnetic potentials. Apart from linking the world of discrete magnetic operators with the probabilistic world through the Feynman–Kac–Itô formula, the insights from this paper gained on both sides should be of an independent interest. As applications of the Feynman–Kac–Itô formula, we prove a Kato inequality, a Golden–Thompson inequality and an explicit representation of the quadratic form domains corresponding to a large class of potentials.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-015-0633-9