Engineering the singlet–triplet energy splitting in a TADF molecule
The key to engineering an efficient TADF emitter is to achieve a small energy splitting between a pair of molecular singlet and triplet states. This work makes important contributions towards achieving this goal. By studying the new TADF emitter 2,7-bis(phenoxazin-10-yl)-9,9-dimethylthioxanthene- S...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2016-01, Vol.4 (17), p.3815-3824 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The key to engineering an efficient TADF emitter is to achieve a small energy splitting between a pair of molecular singlet and triplet states. This work makes important contributions towards achieving this goal. By studying the new TADF emitter 2,7-bis(phenoxazin-10-yl)-9,9-dimethylthioxanthene-
S
,
S
-dioxide (DPO-TXO2) and the donor and acceptor units separately, the available radiative and non-radiative pathways of DPO-TXO2 have been identified. The energy splitting between singlet and triplet states was clearly identified in four different environments, in solutions and solid state. The results show that DPO-TXO2 is a promising TADF emitter, having Δ
E
ST
= 0.01 eV in zeonex matrix. We further show how the environment plays a key role in the fine tuning of the energy levels of the
1
CT state with respect to the donor
3
LE
D
triplet state, which can then be used to control the Δ
E
ST
energy value. We elucidate the TADF mechanism dynamics when the
1
CT state is located below the
3
LE triplet state which it spin orbit couples to, and we also discuss the OLED device performance with this new emitter, which shows maximum external quantum efficiency (E.Q.E.) of 13.5% at 166 cd m
−2
. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/C5TC03849A |