Whole-Body Pose Estimation in Human Bicycle Riding Using a Small Set of Wearable Sensors

Tracking whole-body human pose in physical human-machine interactions is challenging because of highly dimensional human motions and lack of inexpensive, nonintrusive motion sensors in outdoor environment. In this paper, we present a computational scheme to estimate the human whole-body pose with ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2016-02, Vol.21 (1), p.163-174
Hauptverfasser: Zhang, Yizhai, Chen, Kuo, Yi, Jingang, Liu, Tao, Pan, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 1
container_start_page 163
container_title IEEE/ASME transactions on mechatronics
container_volume 21
creator Zhang, Yizhai
Chen, Kuo
Yi, Jingang
Liu, Tao
Pan, Quan
description Tracking whole-body human pose in physical human-machine interactions is challenging because of highly dimensional human motions and lack of inexpensive, nonintrusive motion sensors in outdoor environment. In this paper, we present a computational scheme to estimate the human whole-body pose with application to bicycle riding using a small set of wearable sensors. The estimation scheme is built on the fusion of gyroscopes, accelerometers, force sensors, and physical rider-bicycle interaction constraints through an extended Kalman filter design. The use of physical rider-bicycle interaction constraints helps not only eliminate the integration drifts of inertial sensor measurements but also reduce the number of the needed wearable sensors for pose estimation. For each set of the upper and the lower limb, only one tri-axial gyroscope is needed to accurately obtain the 3-D pose information. The drift-free, reliable estimation performance is demonstrated through both indoor and outdoor riding experiments.
doi_str_mv 10.1109/TMECH.2015.2490118
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816071442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7296666</ieee_id><sourcerecordid>1816071442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-1517287920f11e6f2c04fc3f8125ab8090e1cf17b483557626f5c1bde5fccf7d3</originalsourceid><addsrcrecordid>eNpdkMFOwkAQhhujiYi-gF428eKlOLPddrdHISgmGI1A4LZZllktKV3slgNvbxHjwTnMzOH7J5Mviq4ReoiQ309fhoNRjwOmPS5yQFQnUQdzgTGgWJy2O6gkFiJJz6OLENYAIBCwEy3mn76kuO9Xe_bmA7FhaIqNaQpfsaJio93GVKxf2L0tib0Xq6L6YLNw6IZNNqYs2YQa5h2bk6nNsoUmVAVfh8vozJky0NXv7Eazx-F0MIrHr0_Pg4dxbBOumhhTlFzJnINDpMxxC8LZxCnkqVkqyIHQOpRLoZI0lRnPXGpxuaLUWevkKulGd8e729p_7Sg0elMES2VpKvK7oFFhBhKF4C16-w9d-11dtd9plEryRCgBLcWPlK19CDU5va1bI_VeI-iDbP0jWx9k61_ZbejmGCqI6C8geZ61lXwD5d15Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787234840</pqid></control><display><type>article</type><title>Whole-Body Pose Estimation in Human Bicycle Riding Using a Small Set of Wearable Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yizhai ; Chen, Kuo ; Yi, Jingang ; Liu, Tao ; Pan, Quan</creator><creatorcontrib>Zhang, Yizhai ; Chen, Kuo ; Yi, Jingang ; Liu, Tao ; Pan, Quan</creatorcontrib><description>Tracking whole-body human pose in physical human-machine interactions is challenging because of highly dimensional human motions and lack of inexpensive, nonintrusive motion sensors in outdoor environment. In this paper, we present a computational scheme to estimate the human whole-body pose with application to bicycle riding using a small set of wearable sensors. The estimation scheme is built on the fusion of gyroscopes, accelerometers, force sensors, and physical rider-bicycle interaction constraints through an extended Kalman filter design. The use of physical rider-bicycle interaction constraints helps not only eliminate the integration drifts of inertial sensor measurements but also reduce the number of the needed wearable sensors for pose estimation. For each set of the upper and the lower limb, only one tri-axial gyroscope is needed to accurately obtain the 3-D pose information. The drift-free, reliable estimation performance is demonstrated through both indoor and outdoor riding experiments.</description><identifier>ISSN: 1083-4435</identifier><identifier>EISSN: 1941-014X</identifier><identifier>DOI: 10.1109/TMECH.2015.2490118</identifier><identifier>CODEN: IATEFW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>accelerometer and gyroscope ; Bicycles ; cycling ; Gyroscopes ; Human ; Human motion ; Joints ; Kinematics ; Outdoor ; Riding ; sensor fusion ; Sensors ; Wearable ; Wearable sensors ; whole-body pose estimation</subject><ispartof>IEEE/ASME transactions on mechatronics, 2016-02, Vol.21 (1), p.163-174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-1517287920f11e6f2c04fc3f8125ab8090e1cf17b483557626f5c1bde5fccf7d3</citedby><cites>FETCH-LOGICAL-c328t-1517287920f11e6f2c04fc3f8125ab8090e1cf17b483557626f5c1bde5fccf7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7296666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7296666$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yizhai</creatorcontrib><creatorcontrib>Chen, Kuo</creatorcontrib><creatorcontrib>Yi, Jingang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Pan, Quan</creatorcontrib><title>Whole-Body Pose Estimation in Human Bicycle Riding Using a Small Set of Wearable Sensors</title><title>IEEE/ASME transactions on mechatronics</title><addtitle>TMECH</addtitle><description>Tracking whole-body human pose in physical human-machine interactions is challenging because of highly dimensional human motions and lack of inexpensive, nonintrusive motion sensors in outdoor environment. In this paper, we present a computational scheme to estimate the human whole-body pose with application to bicycle riding using a small set of wearable sensors. The estimation scheme is built on the fusion of gyroscopes, accelerometers, force sensors, and physical rider-bicycle interaction constraints through an extended Kalman filter design. The use of physical rider-bicycle interaction constraints helps not only eliminate the integration drifts of inertial sensor measurements but also reduce the number of the needed wearable sensors for pose estimation. For each set of the upper and the lower limb, only one tri-axial gyroscope is needed to accurately obtain the 3-D pose information. The drift-free, reliable estimation performance is demonstrated through both indoor and outdoor riding experiments.</description><subject>accelerometer and gyroscope</subject><subject>Bicycles</subject><subject>cycling</subject><subject>Gyroscopes</subject><subject>Human</subject><subject>Human motion</subject><subject>Joints</subject><subject>Kinematics</subject><subject>Outdoor</subject><subject>Riding</subject><subject>sensor fusion</subject><subject>Sensors</subject><subject>Wearable</subject><subject>Wearable sensors</subject><subject>whole-body pose estimation</subject><issn>1083-4435</issn><issn>1941-014X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFOwkAQhhujiYi-gF428eKlOLPddrdHISgmGI1A4LZZllktKV3slgNvbxHjwTnMzOH7J5Mviq4ReoiQ309fhoNRjwOmPS5yQFQnUQdzgTGgWJy2O6gkFiJJz6OLENYAIBCwEy3mn76kuO9Xe_bmA7FhaIqNaQpfsaJio93GVKxf2L0tib0Xq6L6YLNw6IZNNqYs2YQa5h2bk6nNsoUmVAVfh8vozJky0NXv7Eazx-F0MIrHr0_Pg4dxbBOumhhTlFzJnINDpMxxC8LZxCnkqVkqyIHQOpRLoZI0lRnPXGpxuaLUWevkKulGd8e729p_7Sg0elMES2VpKvK7oFFhBhKF4C16-w9d-11dtd9plEryRCgBLcWPlK19CDU5va1bI_VeI-iDbP0jWx9k61_ZbejmGCqI6C8geZ61lXwD5d15Eg</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Zhang, Yizhai</creator><creator>Chen, Kuo</creator><creator>Yi, Jingang</creator><creator>Liu, Tao</creator><creator>Pan, Quan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20160201</creationdate><title>Whole-Body Pose Estimation in Human Bicycle Riding Using a Small Set of Wearable Sensors</title><author>Zhang, Yizhai ; Chen, Kuo ; Yi, Jingang ; Liu, Tao ; Pan, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-1517287920f11e6f2c04fc3f8125ab8090e1cf17b483557626f5c1bde5fccf7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>accelerometer and gyroscope</topic><topic>Bicycles</topic><topic>cycling</topic><topic>Gyroscopes</topic><topic>Human</topic><topic>Human motion</topic><topic>Joints</topic><topic>Kinematics</topic><topic>Outdoor</topic><topic>Riding</topic><topic>sensor fusion</topic><topic>Sensors</topic><topic>Wearable</topic><topic>Wearable sensors</topic><topic>whole-body pose estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yizhai</creatorcontrib><creatorcontrib>Chen, Kuo</creatorcontrib><creatorcontrib>Yi, Jingang</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Pan, Quan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE/ASME transactions on mechatronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yizhai</au><au>Chen, Kuo</au><au>Yi, Jingang</au><au>Liu, Tao</au><au>Pan, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Whole-Body Pose Estimation in Human Bicycle Riding Using a Small Set of Wearable Sensors</atitle><jtitle>IEEE/ASME transactions on mechatronics</jtitle><stitle>TMECH</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>21</volume><issue>1</issue><spage>163</spage><epage>174</epage><pages>163-174</pages><issn>1083-4435</issn><eissn>1941-014X</eissn><coden>IATEFW</coden><abstract>Tracking whole-body human pose in physical human-machine interactions is challenging because of highly dimensional human motions and lack of inexpensive, nonintrusive motion sensors in outdoor environment. In this paper, we present a computational scheme to estimate the human whole-body pose with application to bicycle riding using a small set of wearable sensors. The estimation scheme is built on the fusion of gyroscopes, accelerometers, force sensors, and physical rider-bicycle interaction constraints through an extended Kalman filter design. The use of physical rider-bicycle interaction constraints helps not only eliminate the integration drifts of inertial sensor measurements but also reduce the number of the needed wearable sensors for pose estimation. For each set of the upper and the lower limb, only one tri-axial gyroscope is needed to accurately obtain the 3-D pose information. The drift-free, reliable estimation performance is demonstrated through both indoor and outdoor riding experiments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMECH.2015.2490118</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4435
ispartof IEEE/ASME transactions on mechatronics, 2016-02, Vol.21 (1), p.163-174
issn 1083-4435
1941-014X
language eng
recordid cdi_proquest_miscellaneous_1816071442
source IEEE Electronic Library (IEL)
subjects accelerometer and gyroscope
Bicycles
cycling
Gyroscopes
Human
Human motion
Joints
Kinematics
Outdoor
Riding
sensor fusion
Sensors
Wearable
Wearable sensors
whole-body pose estimation
title Whole-Body Pose Estimation in Human Bicycle Riding Using a Small Set of Wearable Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Whole-Body%20Pose%20Estimation%20in%20Human%20Bicycle%20Riding%20Using%20a%20Small%20Set%20of%20Wearable%20Sensors&rft.jtitle=IEEE/ASME%20transactions%20on%20mechatronics&rft.au=Zhang,%20Yizhai&rft.date=2016-02-01&rft.volume=21&rft.issue=1&rft.spage=163&rft.epage=174&rft.pages=163-174&rft.issn=1083-4435&rft.eissn=1941-014X&rft.coden=IATEFW&rft_id=info:doi/10.1109/TMECH.2015.2490118&rft_dat=%3Cproquest_RIE%3E1816071442%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787234840&rft_id=info:pmid/&rft_ieee_id=7296666&rfr_iscdi=true