Whole-Body Pose Estimation in Human Bicycle Riding Using a Small Set of Wearable Sensors

Tracking whole-body human pose in physical human-machine interactions is challenging because of highly dimensional human motions and lack of inexpensive, nonintrusive motion sensors in outdoor environment. In this paper, we present a computational scheme to estimate the human whole-body pose with ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ASME transactions on mechatronics 2016-02, Vol.21 (1), p.163-174
Hauptverfasser: Zhang, Yizhai, Chen, Kuo, Yi, Jingang, Liu, Tao, Pan, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tracking whole-body human pose in physical human-machine interactions is challenging because of highly dimensional human motions and lack of inexpensive, nonintrusive motion sensors in outdoor environment. In this paper, we present a computational scheme to estimate the human whole-body pose with application to bicycle riding using a small set of wearable sensors. The estimation scheme is built on the fusion of gyroscopes, accelerometers, force sensors, and physical rider-bicycle interaction constraints through an extended Kalman filter design. The use of physical rider-bicycle interaction constraints helps not only eliminate the integration drifts of inertial sensor measurements but also reduce the number of the needed wearable sensors for pose estimation. For each set of the upper and the lower limb, only one tri-axial gyroscope is needed to accurately obtain the 3-D pose information. The drift-free, reliable estimation performance is demonstrated through both indoor and outdoor riding experiments.
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2015.2490118