Stability and Performance Analysis of Time-Delayed Actuator Control Systems
Time delay is a common phenomenon in robotic systems due to computational requirements and communication properties between or within high-level and low-level controllers as well as the physical constraints of the actuator and sensor. It is widely believed that delays are harmful for robotic systems...
Gespeichert in:
Veröffentlicht in: | Journal of dynamic systems, measurement, and control measurement, and control, 2016-05, Vol.138 (5) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time delay is a common phenomenon in robotic systems due to computational requirements and communication properties between or within high-level and low-level controllers as well as the physical constraints of the actuator and sensor. It is widely believed that delays are harmful for robotic systems in terms of stability and performance; however, we propose a different view that the time delay of the system may in some cases benefit system stability and performance. Therefore, in this paper, we discuss the influences of the displacement-feedback delay (single delay) and both displacement and velocity feedback delays (double delays) on robotic actuator systems by using the cluster treatment of characteristic roots (CTCR) methodology. Hence, we can ascertain the exact stability interval for single-delay systems and the rigorous stability region for double-delay systems. The influences of controller gains and the filtering frequency on the stability of the system are discussed. Based on the stability information coupled with the dominant root distribution, we propose one nonconventional rule which suggests increasing time delay to certain time windows to obtain the optimal system performance. The computation results are also verified on an actuator testbed. |
---|---|
ISSN: | 0022-0434 1528-9028 |
DOI: | 10.1115/1.4032461 |