Open-cluster density profiles derived using a kernel estimator
Surface and spatial radial density profiles in open clusters are derived using a kernel estimator method. Formulae are obtained for the contribution of every star into the spatial density profile. The evaluation of spatial density profiles is tested against open-cluster models from N-body experiment...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2016-03, Vol.456 (4), p.3757-3757 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface and spatial radial density profiles in open clusters are derived using a kernel estimator method. Formulae are obtained for the contribution of every star into the spatial density profile. The evaluation of spatial density profiles is tested against open-cluster models from N-body experiments with N = 500. Surface density profiles are derived for seven open clusters (NGC 1502, 1960, 2287, 2516, 2682, 6819 and 6939) using Two-Micron All-Sky Survey data and for different limiting magnitudes. The selection of an optimal kernel half-width is discussed. It is shown that open-cluster radius estimates hardly depend on the kernel half-width. Hints of stellar mass segregation and structural features indicating cluster non-stationarity in the regular force field are found. A comparison with other investigations shows that the data on open-cluster sizes are often underestimated. The existence of an extended corona around the open cluster NGC 6939 was confirmed. A combined function composed of the King density profile for the cluster core and the uniform sphere for the cluster corona is shown to be a better approximation of the surface radial density profile.The King function alone does not reproduce surface density profiles of sample clusters properly. The number of stars, the cluster masses and the tidal radii in the Galactic gravitational field for the sample clusters are estimated. It is shown that NGC 6819 and 6939 are extended beyond their tidal surfaces. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stv2874 |