Blow up boundary solutions of some semilinear fractional equations in the unit ball
For γ>0, we are interested in blow up solutions u∈C+(B) of the fractional problem in the unit ball B. We distinguish particularly two orders of singularity at the boundary: solutions exploding at the same rate than δα2−1 (δ denotes the Euclidean distance) and those higher singular than δα2−1. As...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2016-07, Vol.140, p.236-253 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For γ>0, we are interested in blow up solutions u∈C+(B) of the fractional problem in the unit ball B. We distinguish particularly two orders of singularity at the boundary: solutions exploding at the same rate than δα2−1 (δ denotes the Euclidean distance) and those higher singular than δα2−1. As a consequence, it will be shown that the classical Keller–Osserman condition cannot be readopted in the fractional setting. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2016.03.015 |