Blow up boundary solutions of some semilinear fractional equations in the unit ball

For γ>0, we are interested in blow up solutions u∈C+(B) of the fractional problem in the unit ball B. We distinguish particularly two orders of singularity at the boundary: solutions exploding at the same rate than δα2−1 (δ denotes the Euclidean distance) and those higher singular than δα2−1. As...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2016-07, Vol.140, p.236-253
Hauptverfasser: Ben Chrouda, Mohamed, Ben Fredj, Mahmoud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For γ>0, we are interested in blow up solutions u∈C+(B) of the fractional problem in the unit ball B. We distinguish particularly two orders of singularity at the boundary: solutions exploding at the same rate than δα2−1 (δ denotes the Euclidean distance) and those higher singular than δα2−1. As a consequence, it will be shown that the classical Keller–Osserman condition cannot be readopted in the fractional setting.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2016.03.015