A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor

The fabrication of a highly sensitive electrochemical non-enzymatic glucose sensor based on copper nanoparticles (Cu NPs) dispersed in a graphene (G)-ferrocene (Fc) redox polymer multicomponent nanobead (MCNB) is reported. The preparation of MCNB involves three major steps, namely: i) the preparatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2016-10, Vol.84, p.53-63
Hauptverfasser: Gopalan, A.I., Muthuchamy, N., Komathi, S., Lee, K-P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fabrication of a highly sensitive electrochemical non-enzymatic glucose sensor based on copper nanoparticles (Cu NPs) dispersed in a graphene (G)-ferrocene (Fc) redox polymer multicomponent nanobead (MCNB) is reported. The preparation of MCNB involves three major steps, namely: i) the preparation of a poly(aniline-co-anthranilic acid)-grafted graphene (G-PANI(COOH), ii) the covalent linking of ferrocene to G-PANI(COOH) via a polyethylene imine (PEI), and iii) the electrodeposition of Cu NPs. The prepared MCNB (designated as G-PANI(COOH)-PEI-Fc/Cu-MCNB), contains a conductive G-PANI(COOH), electron mediating Fc, and electrocatalytic Cu NPs that make it suitable for ultrasensitive non-enzymatic electrochemical sensing. The morphology, structure, and electro activities of MCNB were characterized. Electrochemical measurements showed that the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE modified electrode exhibited good electrocatalytic behavior towards the detection of glucose in a wide linear range (0.50 to 15mM), with a low detection limit (0.16mM) and high sensitivity (14.3µAmM−1cm−2). Besides, the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE sensor electrode did not respond to the presence of electroactive interferrants (such as uric acid, ascorbic acid, and dopamine) and saccharides or carbohydrates (fructose, lactose, d-isoascorbic acid, and dextrin), demonstrating its selectivity towards glucose. The fabricated NEG sensor exhibited high precision for measuring glucose in serum samples, with an average RSD of 4.3% and results comparable to those of commercial glucose test strips. This reliability and stability of glucose sensing indicates that G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE would be a promising material for the non-enzymatic detection of glucose in physiological fluids. •A new strategy for integrating multicomponents into a nanobead is utilized.•We highlight the use of nanobead as a platform for non-enzymatic glucose sensing.•Excellent selectivity, sensitivity, reproducibility and stability were witnessed.•The novel strategy can be extended for other enzyme-free biosensors.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2015.10.079