An online parameter identification method for time dependent partial differential equations

Online parameter identification is of importance, e.g., for model predictive control. Since the parameters have to be identified simultaneously to the process of the modeled system, dynamical update laws are used for state and parameter estimates. Most of the existing methods for infinite dimensiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2016-04, Vol.32 (4), p.45006-45033
Hauptverfasser: Boiger, R, Kaltenbacher, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Online parameter identification is of importance, e.g., for model predictive control. Since the parameters have to be identified simultaneously to the process of the modeled system, dynamical update laws are used for state and parameter estimates. Most of the existing methods for infinite dimensional systems either impose strong assumptions on the model or cannot handle partial observations. Therefore we propose and analyse an online parameter identification method that is less restrictive concerning the underlying model and allows for partial observations and noisy data. The performance of our approach is illustrated by some numerical experiments.
ISSN:0266-5611
1361-6420
DOI:10.1088/0266-5611/32/4/045006