Extremal norms of the potentials recovered from inverse Dirichlet problems

Consider the Sturm-Liouville eigenvalue problem , where , and its spectrum is denoted by . For a real number λ, define and . We will set up a formula for explicitly in terms of λ and specify where the infimum can be attained. As an application, we will give the extremal values of the nth eigenvalue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inverse problems 2016-03, Vol.32 (3), p.35007-35019
Hauptverfasser: Qi, Jiangang, Chen, Shaozhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the Sturm-Liouville eigenvalue problem , where , and its spectrum is denoted by . For a real number λ, define and . We will set up a formula for explicitly in terms of λ and specify where the infimum can be attained. As an application, we will give the extremal values of the nth eigenvalue of the Dirichlet problem for potentials on a sphere , . The proofs are based on a new Lyapunov-type inequality for Sturm-Liouville equations with potentials.
ISSN:0266-5611
1361-6420
DOI:10.1088/0266-5611/32/3/035007