Capacitively coupled ECG sensor using a single electrode with adaptive power-line noise cancellation
This report describes a small heartbeat monitoring system using capacitively coupled ECG sensors. Capacitively coupled sensors using an insulated electrode have been proposed to obtain ECG signals without pasting electrodes directly onto the skin. Although the sensors have better usability than conv...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This report describes a small heartbeat monitoring system using capacitively coupled ECG sensors. Capacitively coupled sensors using an insulated electrode have been proposed to obtain ECG signals without pasting electrodes directly onto the skin. Although the sensors have better usability than conventional ECG sensors, it is difficult to remove noise contamination. Power-line noise can be a severe noise source that increases when only a single electrode is used. However, a multiple electrode system degrades usability. To address this problem, we propose a noise cancellation technique using an adaptive noise feedback approach, which can improve the availability of the capacitive ECG sensor using a single electrode. An instrumental amplifier is used in the proposed method for the first stage amplifier instead of voltage follower circuits. A microcontroller predicts the noise waveform from an ADC output. To avoid saturation caused by power-line noise, the predicted noise waveform is fed back to an amplifier input through a DAC. We implemented the prototype sensor system to evaluate the noise reduction performance. Measurement results using a prototype board show that the proposed method can suppress 28-dB power-line noise. |
---|---|
ISSN: | 2168-2208 |
DOI: | 10.1109/BHI.2016.7455872 |