Highly eccentric inspirals into a black hole
We model the inspiral of a compact stellar-mass object into a massive nonrotating black hole including all dissipative and conservative first-order-in-the-mass-ratio effects on the orbital motion. The techniques we develop allow inspirals with initial eccentricities as high as e~ 0.8 and initial sep...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2016-03, Vol.93 (6), Article 064024 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We model the inspiral of a compact stellar-mass object into a massive nonrotating black hole including all dissipative and conservative first-order-in-the-mass-ratio effects on the orbital motion. The techniques we develop allow inspirals with initial eccentricities as high as e~ 0.8 and initial separations as large as p~ 50 to be evolved through many thousands of orbits up to the onset of the plunge into the black hole. The inspiral is computed using an osculating elements scheme driven by a hybridized self-force model, which combines Lorenz-gauge self-force results with highly accurate flux data from a Regge-Wheeler-Zerilli code. The high accuracy of our hybrid self-force model allows the orbital phase of the inspirals to be tracked to within ~0.1 radians or better. The difference between self-force models and inspirals computed in the radiative approximation is quantified. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.93.064024 |