Stable coherent states

We analyze the stability under time evolution of complexifier coherent states (CCS) in one-dimensional mechanical systems. A system of coherent states is called stable if it evolves into another coherent state. It turns out that a system can only possess stable CCS if the classical evolution of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-04, Vol.93 (8), Article 084030
Hauptverfasser: Zipfel, Antonia, Thiemann, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Physical review. D
container_volume 93
creator Zipfel, Antonia
Thiemann, Thomas
description We analyze the stability under time evolution of complexifier coherent states (CCS) in one-dimensional mechanical systems. A system of coherent states is called stable if it evolves into another coherent state. It turns out that a system can only possess stable CCS if the classical evolution of the variable z=e super(-iL[chi]Cq) for a given complexifier C depends only on z itself and not on its complex conjugate. This condition is very restrictive in general so that only a few systems exist that obey this condition. However, it is possible to access a wider class of models that in principle may allow for stable coherent states associated with certain regions in the phase space by introducing action-angle coordinates.
doi_str_mv 10.1103/PhysRevD.93.084030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816036490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816036490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-c6601309ec569b7b084daedd31cb587032293d0f1aa30ddd25bcbd7e8761c5bc3</originalsourceid><addsrcrecordid>eNo9kDtPwzAUhS0EElXpysDUkSXh2jex4xGVp1QJxGO2_LhRi9Km2C5S_z1BAabzDUf3Hn2MXXAoOQe8el4d0gt93ZQaS2gqQDhiE1EpKACEPv5nDqdsltIHDChBK84n7Pw1W9fR3PcrirTN85RtpnTGTlrbJZr95pS9392-LR6K5dP94-J6WXgUOhdeSuAImnwttVNu-B4shYDcu7pRgEJoDNByaxFCCKJ23gVFjZLcD4xTdjne3cX-c08pm806eeo6u6V-nwxvhqUoKw1DVYxVH_uUIrVmF9cbGw-Gg_nxYP48GI1m9IDf9y5Qqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816036490</pqid></control><display><type>article</type><title>Stable coherent states</title><source>American Physical Society Journals</source><creator>Zipfel, Antonia ; Thiemann, Thomas</creator><creatorcontrib>Zipfel, Antonia ; Thiemann, Thomas</creatorcontrib><description>We analyze the stability under time evolution of complexifier coherent states (CCS) in one-dimensional mechanical systems. A system of coherent states is called stable if it evolves into another coherent state. It turns out that a system can only possess stable CCS if the classical evolution of the variable z=e super(-iL[chi]Cq) for a given complexifier C depends only on z itself and not on its complex conjugate. This condition is very restrictive in general so that only a few systems exist that obey this condition. However, it is possible to access a wider class of models that in principle may allow for stable coherent states associated with certain regions in the phase space by introducing action-angle coordinates.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.93.084030</identifier><language>eng</language><subject>Coherence ; Conjugates ; Cosmology ; Evolution ; Gravitation ; Mathematical models ; Mechanical systems ; Stability</subject><ispartof>Physical review. D, 2016-04, Vol.93 (8), Article 084030</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-c6601309ec569b7b084daedd31cb587032293d0f1aa30ddd25bcbd7e8761c5bc3</citedby><cites>FETCH-LOGICAL-c329t-c6601309ec569b7b084daedd31cb587032293d0f1aa30ddd25bcbd7e8761c5bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Zipfel, Antonia</creatorcontrib><creatorcontrib>Thiemann, Thomas</creatorcontrib><title>Stable coherent states</title><title>Physical review. D</title><description>We analyze the stability under time evolution of complexifier coherent states (CCS) in one-dimensional mechanical systems. A system of coherent states is called stable if it evolves into another coherent state. It turns out that a system can only possess stable CCS if the classical evolution of the variable z=e super(-iL[chi]Cq) for a given complexifier C depends only on z itself and not on its complex conjugate. This condition is very restrictive in general so that only a few systems exist that obey this condition. However, it is possible to access a wider class of models that in principle may allow for stable coherent states associated with certain regions in the phase space by introducing action-angle coordinates.</description><subject>Coherence</subject><subject>Conjugates</subject><subject>Cosmology</subject><subject>Evolution</subject><subject>Gravitation</subject><subject>Mathematical models</subject><subject>Mechanical systems</subject><subject>Stability</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kDtPwzAUhS0EElXpysDUkSXh2jex4xGVp1QJxGO2_LhRi9Km2C5S_z1BAabzDUf3Hn2MXXAoOQe8el4d0gt93ZQaS2gqQDhiE1EpKACEPv5nDqdsltIHDChBK84n7Pw1W9fR3PcrirTN85RtpnTGTlrbJZr95pS9392-LR6K5dP94-J6WXgUOhdeSuAImnwttVNu-B4shYDcu7pRgEJoDNByaxFCCKJ23gVFjZLcD4xTdjne3cX-c08pm806eeo6u6V-nwxvhqUoKw1DVYxVH_uUIrVmF9cbGw-Gg_nxYP48GI1m9IDf9y5Qqw</recordid><startdate>20160415</startdate><enddate>20160415</enddate><creator>Zipfel, Antonia</creator><creator>Thiemann, Thomas</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160415</creationdate><title>Stable coherent states</title><author>Zipfel, Antonia ; Thiemann, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-c6601309ec569b7b084daedd31cb587032293d0f1aa30ddd25bcbd7e8761c5bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coherence</topic><topic>Conjugates</topic><topic>Cosmology</topic><topic>Evolution</topic><topic>Gravitation</topic><topic>Mathematical models</topic><topic>Mechanical systems</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zipfel, Antonia</creatorcontrib><creatorcontrib>Thiemann, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zipfel, Antonia</au><au>Thiemann, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable coherent states</atitle><jtitle>Physical review. D</jtitle><date>2016-04-15</date><risdate>2016</risdate><volume>93</volume><issue>8</issue><artnum>084030</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We analyze the stability under time evolution of complexifier coherent states (CCS) in one-dimensional mechanical systems. A system of coherent states is called stable if it evolves into another coherent state. It turns out that a system can only possess stable CCS if the classical evolution of the variable z=e super(-iL[chi]Cq) for a given complexifier C depends only on z itself and not on its complex conjugate. This condition is very restrictive in general so that only a few systems exist that obey this condition. However, it is possible to access a wider class of models that in principle may allow for stable coherent states associated with certain regions in the phase space by introducing action-angle coordinates.</abstract><doi>10.1103/PhysRevD.93.084030</doi></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2016-04, Vol.93 (8), Article 084030
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_miscellaneous_1816036490
source American Physical Society Journals
subjects Coherence
Conjugates
Cosmology
Evolution
Gravitation
Mathematical models
Mechanical systems
Stability
title Stable coherent states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20coherent%20states&rft.jtitle=Physical%20review.%20D&rft.au=Zipfel,%20Antonia&rft.date=2016-04-15&rft.volume=93&rft.issue=8&rft.artnum=084030&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.93.084030&rft_dat=%3Cproquest_cross%3E1816036490%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816036490&rft_id=info:pmid/&rfr_iscdi=true