Stable coherent states
We analyze the stability under time evolution of complexifier coherent states (CCS) in one-dimensional mechanical systems. A system of coherent states is called stable if it evolves into another coherent state. It turns out that a system can only possess stable CCS if the classical evolution of the...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2016-04, Vol.93 (8), Article 084030 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the stability under time evolution of complexifier coherent states (CCS) in one-dimensional mechanical systems. A system of coherent states is called stable if it evolves into another coherent state. It turns out that a system can only possess stable CCS if the classical evolution of the variable z=e super(-iL[chi]Cq) for a given complexifier C depends only on z itself and not on its complex conjugate. This condition is very restrictive in general so that only a few systems exist that obey this condition. However, it is possible to access a wider class of models that in principle may allow for stable coherent states associated with certain regions in the phase space by introducing action-angle coordinates. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.93.084030 |