On the Impact of Optimal Modulation and FEC Overhead on Future Optical Networks

The potential of optimum selection of modulation and forward error correction (FEC) overhead (OH) in future wavelength-routed nonlinear optical mesh networks is studied from an information theory perspective. Different network topologies are studied as well as both ideal soft-decision (SD) and hard-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2016-05, Vol.34 (9), p.2339-2352
Hauptverfasser: Alvarado, Alex, Ives, David J., Savory, Seb J., Bayvel, Polina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential of optimum selection of modulation and forward error correction (FEC) overhead (OH) in future wavelength-routed nonlinear optical mesh networks is studied from an information theory perspective. Different network topologies are studied as well as both ideal soft-decision (SD) and hard-decision (HD) FEC based on demap-and-decode (bit wise) receivers. When compared to the somewhat standard assumption of QPSK with 7% OH, the results show large gains in network throughput. When compared to SD-FEC, HD-FEC is shown to cause network throughput losses of 12%, 15%, and 20% for a national, continental, and transcontinental topology, respectively. Furthermore, it is shown that for national and continental network topologies, using one modulation format and only two OHs achieves at least 75% of the maximum theoretical throughput. This is in contrast with the infinite number of OHs required in the ideal case. The obtained optimal OHs are between 5% and 80%, highlighting the advantage of using FEC with high OHs.
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2016.2517699