Electrochemical behavior of chemically synthesized selenium thin film

(a) Image shows surface morphology of selenium thin film with unequal nanoparticles. Inset AFM figure supports SEM analysis. The inside Ragone plot displays supercapacitive behavior of selenium electrode material, and (b) the formation of selenium thin film on stainless steel substrate as nucleation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2016-05, Vol.469, p.257-262
Hauptverfasser: Patil, A.M., Kumbhar, V.S., Chodankar, N.R., Lokhande, A.C., Lokhande, C.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(a) Image shows surface morphology of selenium thin film with unequal nanoparticles. Inset AFM figure supports SEM analysis. The inside Ragone plot displays supercapacitive behavior of selenium electrode material, and (b) the formation of selenium thin film on stainless steel substrate as nucleation, aggregation, coalescence and grouth of particles. [Display omitted] The facile and low cost simple chemical bath deposition (CBD) method is employed to synthesize red colored selenium thin films. These selenium films are characterized for structural, morphological, topographical and wettability studies. The X-ray diffraction (XRD) pattern showed the crystalline nature of selenium thin film with hexagonal crystal structure. The scanning electron microscopy (SEM) study displays selenium nanoparticles ranging from 20 to 475nm. A specific surface area of 30.5m2g−1 is observed for selenium nanoparticles. The selenium nanoparticles hold mesopores in the range of 1.39nm, taking benefits of the good physicochemical stability and excellent porosity. Subsequently, the electrochemical properties of selenium thin films are deliberated by cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) techniques. The selenium thin film shows specific capacitance (Cs) of 21.98Fg−1 with 91% electrochemical stability.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2016.02.030