Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide–Plasmon Polaritons
Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light–matter states where material properties such as the work function [Hutchison et al. Adv. Mater. 2013, 25, 2481−2485 ], chemical reactivity [Hutchison et al. Angew. Chem., Int. Ed. 2012,...
Gespeichert in:
Veröffentlicht in: | Nano letters 2016-04, Vol.16 (4), p.2651-2656 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2656 |
---|---|
container_issue | 4 |
container_start_page | 2651 |
container_title | Nano letters |
container_volume | 16 |
creator | Zeng, Peng Cadusch, Jasper Chakraborty, Debadi Smith, Trevor A Roberts, Ann Sader, John E Davis, Timothy J Gómez, Daniel E |
description | Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light–matter states where material properties such as the work function [Hutchison et al. Adv. Mater. 2013, 25, 2481−2485 ], chemical reactivity [Hutchison et al. Angew. Chem., Int. Ed. 2012, 51, 1592−1596 ], ultrafast energy relaxation [Salomon et al. Angew. Chem., Int. Ed. 2009, 48, 8748−8751 ; Gomez et al. J. Phys. Chem. B 2013, 117, 4340–4346 ], and electrical conductivity [Orgiu et al. Nat. Mater. 2015, 14, 1123−1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light–matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations. |
doi_str_mv | 10.1021/acs.nanolett.6b00310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1816031900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816031900</sourcerecordid><originalsourceid>FETCH-LOGICAL-a493t-ac9bb6bbaddd9b586e963a2f8be3c5127b6399abd391a96a59b1730968a0c08e3</originalsourceid><addsrcrecordid>eNqFkc9Kw0AQxhdRbK2-gUiOXlp3s80m601K_QMFi1a8CGE2mbQpyW7dTQRvvoNv6JO4pX-Oepph-H0zw_cRcs7ogNGQXUHmBhq0qbBpBkJRyhk9IF0WcdoXUoaH-z4ZdsiJc0tKqeQRPSadUEjBKU-65G26MI0pdd5mmAfjCrPGGh3MLGhXoA1KHTQLDJ7X03kwMu2qKn3zhPOyxuvgFT5w3pY5_nx9TytwtddOTQW2bIx2p-SogMrh2bb2yMvteDa6708e7x5GN5M-DCVv-pBJpYRSkOe5VFEi0H8HYZEo5FnEwlgJLiWonEsGUkAkFYs5lSIBmtEEeY9cbvaurHlv0TVpXboMqwo0mtalLGHC2yO9R_-iccJYFMbDyKPDDZpZ45zFIl3Zsgb7mTKariNIfQTpLoJ0G4GXXWwvtKrGfC_aee4BugHW8qVprfbe_L3zF7yQl_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781152745</pqid></control><display><type>article</type><title>Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide–Plasmon Polaritons</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zeng, Peng ; Cadusch, Jasper ; Chakraborty, Debadi ; Smith, Trevor A ; Roberts, Ann ; Sader, John E ; Davis, Timothy J ; Gómez, Daniel E</creator><creatorcontrib>Zeng, Peng ; Cadusch, Jasper ; Chakraborty, Debadi ; Smith, Trevor A ; Roberts, Ann ; Sader, John E ; Davis, Timothy J ; Gómez, Daniel E</creatorcontrib><description>Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light–matter states where material properties such as the work function [Hutchison et al. Adv. Mater. 2013, 25, 2481−2485 ], chemical reactivity [Hutchison et al. Angew. Chem., Int. Ed. 2012, 51, 1592−1596 ], ultrafast energy relaxation [Salomon et al. Angew. Chem., Int. Ed. 2009, 48, 8748−8751 ; Gomez et al. J. Phys. Chem. B 2013, 117, 4340–4346 ], and electrical conductivity [Orgiu et al. Nat. Mater. 2015, 14, 1123−1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light–matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.6b00310</identifier><identifier>PMID: 26963038</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aluminum ; Coupling ; Electrons ; Metals - chemistry ; Nanowires - chemistry ; Photons ; Plasmonics ; Plasmons ; Semiconductors ; Spectroscopy ; Surface Plasmon Resonance - methods ; Waveguides</subject><ispartof>Nano letters, 2016-04, Vol.16 (4), p.2651-2656</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a493t-ac9bb6bbaddd9b586e963a2f8be3c5127b6399abd391a96a59b1730968a0c08e3</citedby><cites>FETCH-LOGICAL-a493t-ac9bb6bbaddd9b586e963a2f8be3c5127b6399abd391a96a59b1730968a0c08e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.6b00310$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.6b00310$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26963038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Peng</creatorcontrib><creatorcontrib>Cadusch, Jasper</creatorcontrib><creatorcontrib>Chakraborty, Debadi</creatorcontrib><creatorcontrib>Smith, Trevor A</creatorcontrib><creatorcontrib>Roberts, Ann</creatorcontrib><creatorcontrib>Sader, John E</creatorcontrib><creatorcontrib>Davis, Timothy J</creatorcontrib><creatorcontrib>Gómez, Daniel E</creatorcontrib><title>Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide–Plasmon Polaritons</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light–matter states where material properties such as the work function [Hutchison et al. Adv. Mater. 2013, 25, 2481−2485 ], chemical reactivity [Hutchison et al. Angew. Chem., Int. Ed. 2012, 51, 1592−1596 ], ultrafast energy relaxation [Salomon et al. Angew. Chem., Int. Ed. 2009, 48, 8748−8751 ; Gomez et al. J. Phys. Chem. B 2013, 117, 4340–4346 ], and electrical conductivity [Orgiu et al. Nat. Mater. 2015, 14, 1123−1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light–matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.</description><subject>Aluminum</subject><subject>Coupling</subject><subject>Electrons</subject><subject>Metals - chemistry</subject><subject>Nanowires - chemistry</subject><subject>Photons</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Semiconductors</subject><subject>Spectroscopy</subject><subject>Surface Plasmon Resonance - methods</subject><subject>Waveguides</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9Kw0AQxhdRbK2-gUiOXlp3s80m601K_QMFi1a8CGE2mbQpyW7dTQRvvoNv6JO4pX-Oepph-H0zw_cRcs7ogNGQXUHmBhq0qbBpBkJRyhk9IF0WcdoXUoaH-z4ZdsiJc0tKqeQRPSadUEjBKU-65G26MI0pdd5mmAfjCrPGGh3MLGhXoA1KHTQLDJ7X03kwMu2qKn3zhPOyxuvgFT5w3pY5_nx9TytwtddOTQW2bIx2p-SogMrh2bb2yMvteDa6708e7x5GN5M-DCVv-pBJpYRSkOe5VFEi0H8HYZEo5FnEwlgJLiWonEsGUkAkFYs5lSIBmtEEeY9cbvaurHlv0TVpXboMqwo0mtalLGHC2yO9R_-iccJYFMbDyKPDDZpZ45zFIl3Zsgb7mTKariNIfQTpLoJ0G4GXXWwvtKrGfC_aee4BugHW8qVprfbe_L3zF7yQl_w</recordid><startdate>20160413</startdate><enddate>20160413</enddate><creator>Zeng, Peng</creator><creator>Cadusch, Jasper</creator><creator>Chakraborty, Debadi</creator><creator>Smith, Trevor A</creator><creator>Roberts, Ann</creator><creator>Sader, John E</creator><creator>Davis, Timothy J</creator><creator>Gómez, Daniel E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160413</creationdate><title>Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide–Plasmon Polaritons</title><author>Zeng, Peng ; Cadusch, Jasper ; Chakraborty, Debadi ; Smith, Trevor A ; Roberts, Ann ; Sader, John E ; Davis, Timothy J ; Gómez, Daniel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a493t-ac9bb6bbaddd9b586e963a2f8be3c5127b6399abd391a96a59b1730968a0c08e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum</topic><topic>Coupling</topic><topic>Electrons</topic><topic>Metals - chemistry</topic><topic>Nanowires - chemistry</topic><topic>Photons</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Semiconductors</topic><topic>Spectroscopy</topic><topic>Surface Plasmon Resonance - methods</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Peng</creatorcontrib><creatorcontrib>Cadusch, Jasper</creatorcontrib><creatorcontrib>Chakraborty, Debadi</creatorcontrib><creatorcontrib>Smith, Trevor A</creatorcontrib><creatorcontrib>Roberts, Ann</creatorcontrib><creatorcontrib>Sader, John E</creatorcontrib><creatorcontrib>Davis, Timothy J</creatorcontrib><creatorcontrib>Gómez, Daniel E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Peng</au><au>Cadusch, Jasper</au><au>Chakraborty, Debadi</au><au>Smith, Trevor A</au><au>Roberts, Ann</au><au>Sader, John E</au><au>Davis, Timothy J</au><au>Gómez, Daniel E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide–Plasmon Polaritons</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2016-04-13</date><risdate>2016</risdate><volume>16</volume><issue>4</issue><spage>2651</spage><epage>2656</epage><pages>2651-2656</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light–matter states where material properties such as the work function [Hutchison et al. Adv. Mater. 2013, 25, 2481−2485 ], chemical reactivity [Hutchison et al. Angew. Chem., Int. Ed. 2012, 51, 1592−1596 ], ultrafast energy relaxation [Salomon et al. Angew. Chem., Int. Ed. 2009, 48, 8748−8751 ; Gomez et al. J. Phys. Chem. B 2013, 117, 4340–4346 ], and electrical conductivity [Orgiu et al. Nat. Mater. 2015, 14, 1123−1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light–matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26963038</pmid><doi>10.1021/acs.nanolett.6b00310</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2016-04, Vol.16 (4), p.2651-2656 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1816031900 |
source | MEDLINE; American Chemical Society Journals |
subjects | Aluminum Coupling Electrons Metals - chemistry Nanowires - chemistry Photons Plasmonics Plasmons Semiconductors Spectroscopy Surface Plasmon Resonance - methods Waveguides |
title | Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide–Plasmon Polaritons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T08%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoinduced%20Electron%20Transfer%20in%20the%20Strong%20Coupling%20Regime:%20Waveguide%E2%80%93Plasmon%20Polaritons&rft.jtitle=Nano%20letters&rft.au=Zeng,%20Peng&rft.date=2016-04-13&rft.volume=16&rft.issue=4&rft.spage=2651&rft.epage=2656&rft.pages=2651-2656&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.6b00310&rft_dat=%3Cproquest_cross%3E1816031900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781152745&rft_id=info:pmid/26963038&rfr_iscdi=true |