Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide–Plasmon Polaritons

Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light–matter states where material properties such as the work function [Hutchison et al. Adv. Mater. 2013, 25, 2481−2485 ], chemical reactivity [Hutchison et al. Angew. Chem., Int. Ed. 2012,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2016-04, Vol.16 (4), p.2651-2656
Hauptverfasser: Zeng, Peng, Cadusch, Jasper, Chakraborty, Debadi, Smith, Trevor A, Roberts, Ann, Sader, John E, Davis, Timothy J, Gómez, Daniel E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light–matter states where material properties such as the work function [Hutchison et al. Adv. Mater. 2013, 25, 2481−2485 ], chemical reactivity [Hutchison et al. Angew. Chem., Int. Ed. 2012, 51, 1592−1596 ], ultrafast energy relaxation [Salomon et al. Angew. Chem., Int. Ed. 2009, 48, 8748−8751 ; Gomez et al. J. Phys. Chem. B 2013, 117, 4340–4346 ], and electrical conductivity [Orgiu et al. Nat. Mater. 2015, 14, 1123−1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light–matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.6b00310