A remark on the global regularity for the 3D Navier–Stokes equations
In this paper, we investigate the case of Prodi–Serrin type regularity criterion involving u3 and ∂3uh. More precisely, it is shown that Leray’s weak solutions of the three-dimensional Navier–Stokes equations become regular if the third component of velocity (or the gradient of the velocity field) s...
Gespeichert in:
Veröffentlicht in: | Applied mathematics letters 2016-07, Vol.57, p.126-131 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the case of Prodi–Serrin type regularity criterion involving u3 and ∂3uh. More precisely, it is shown that Leray’s weak solutions of the three-dimensional Navier–Stokes equations become regular if the third component of velocity (or the gradient of the velocity field) satisfies the additional end-point Prodi–Serrin type condition. |
---|---|
ISSN: | 0893-9659 1873-5452 |
DOI: | 10.1016/j.aml.2016.01.016 |