Hypergeometric connotations of quantum equations

We show that the Schrödinger and Klein–Gordon equations can both be derived from a hypergeometric differential equation. The same applies to non linear generalizations of these equations. •We show that both the Schrödinger and Klein–Gordon equations can be derived from the confluent hypergeometric d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2016-05, Vol.450, p.435-443
Hauptverfasser: Plastino, A., Rocca, M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the Schrödinger and Klein–Gordon equations can both be derived from a hypergeometric differential equation. The same applies to non linear generalizations of these equations. •We show that both the Schrödinger and Klein–Gordon equations can be derived from the confluent hypergeometric differential equation.•Also a non linear Klein–Gordon equation can be analogously derived.•The latter coincides with one advanced by Nobre, Rego-Monteiro, and Tsallis.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2016.01.022