Load distribution in large pile groups under static and dynamic loading
Research on the action of pile groups in resisting lateral loading is usually based on analysis, field and centrifuge tests of small pile groups. The interaction between piles in these groups is modelled by modifying the lateral resistance p–y curves developed for a single pile using row dependent r...
Gespeichert in:
Veröffentlicht in: | Bulletin of earthquake engineering 2016-06, Vol.14 (6), p.1461-1474 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research on the action of pile groups in resisting lateral loading is usually based on analysis, field and centrifuge tests of small pile groups. The interaction between piles in these groups is modelled by modifying the lateral resistance p–y curves developed for a single pile using row dependent reduction factors or a group factor for the entire group to simulate the effect of soil–pile–soil interaction. The modifying factors for the p–y curves and the appropriate group factors for pile groups are based entirely on static tests and there is no direct verification that these factors are appropriate to handle the dynamic loading of earthquake induced ground motions. In this paper we investigate the interaction effects between piles under static and seismic loading using the computer program VERSAT-P3D, which uses an equivalent linear constitutive model for the soil. The analytical procedure is calibrated using data from a static field load test on a single pile. Several pile groups, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 8 × 8, 10 × 10, 10 × 2 and 15 × 2 were analysed for the study. Each group was subjected to static pushover and earthquake loading and the distribution of static and dynamic shear forces at various lateral displacements were evaluated. The study shows that the distribution of load within a pile group under dynamic loading varies significantly from the distribution under static loading and is strongly load intensity dependent. Current practice assumes that the distributions are similar. |
---|---|
ISSN: | 1570-761X 1573-1456 |
DOI: | 10.1007/s10518-016-9888-5 |