An MCMC-MIMO Detector as a Stochastic Linear System Solver Using Successive Overrelexation

In this paper, we consider a Markov chain Monte Carlo (MCMC) algorithm using Gibbs sampling for signal detection in multiple input multiple output (MIMO) or code division multiple access (CDMA) systems. It is shown that the MCMC detector can be seen as a stochastic linear system solver. Based on thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2016-02, Vol.15 (2), p.1445-1455
1. Verfasser: Choi, Jinho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a Markov chain Monte Carlo (MCMC) algorithm using Gibbs sampling for signal detection in multiple input multiple output (MIMO) or code division multiple access (CDMA) systems. It is shown that the MCMC detector can be seen as a stochastic linear system solver. Based on this point of view, we generalize the MCMC detector using a relaxation factor that can improve the convergence rate. For the MCMC detector, since a faster convergence rate implies a lower computational complexity, it is important to have a faster convergence rate especially for large MIMO systems, which can also be achieved by optimizing the temperature parameter. While the optimal temperature parameter heavily depends on the signal-to-noise ratio (SNR), it is shown that a good relaxation factor can be found for wide range of the SNR and other parameters.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2015.2490071