EnKF and Hybrid Gain Ensemble Data Assimilation. Part II: EnKF and Hybrid Gain Results
The desire to do detailed comparisons between variational and more scalable ensemble-based data assimilation systems in a semioperational environment has led to the development of a state-of-the-art EnKF system at ECMWF, which has been described in Part I of this two-part study. In this part the per...
Gespeichert in:
Veröffentlicht in: | Monthly weather review 2015-12, Vol.143 (12), p.4865-4882 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The desire to do detailed comparisons between variational and more scalable ensemble-based data assimilation systems in a semioperational environment has led to the development of a state-of-the-art EnKF system at ECMWF, which has been described in Part I of this two-part study. In this part the performance of the EnKF system is evaluated compared to a 4DVar of similar resolution. It is found that there is not a major difference between the forecast skill of the two systems. However, similarly to the operational hybrid 4DVar-EDA, a hybrid EnKF-variational system [which we refer to as the hybrid gain ensemble data assimilation (HG-EnDA)] is capable of significantly outperforming both component systems. The HG-EnDA has been implemented with relatively little effort following Penny's recent study. Results of numerical experimentation comparing the HG-EnDA with the hybrid 4DVar-EDA used operationally at ECMWF are presented, together with diagnostic results, which help characterize the behavior of the proposed ensemble data assimilation system. A discussion of these results in the context of hybrid data assimilation in global NWP is also provided. |
---|---|
ISSN: | 0027-0644 1520-0493 |
DOI: | 10.1175/MWR-D-15-0071.1 |