EnKF and Hybrid Gain Ensemble Data Assimilation. Part II: EnKF and Hybrid Gain Results

The desire to do detailed comparisons between variational and more scalable ensemble-based data assimilation systems in a semioperational environment has led to the development of a state-of-the-art EnKF system at ECMWF, which has been described in Part I of this two-part study. In this part the per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2015-12, Vol.143 (12), p.4865-4882
Hauptverfasser: Bonavita, Massimo, Hamrud, Mats, Isaksen, Lars
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The desire to do detailed comparisons between variational and more scalable ensemble-based data assimilation systems in a semioperational environment has led to the development of a state-of-the-art EnKF system at ECMWF, which has been described in Part I of this two-part study. In this part the performance of the EnKF system is evaluated compared to a 4DVar of similar resolution. It is found that there is not a major difference between the forecast skill of the two systems. However, similarly to the operational hybrid 4DVar-EDA, a hybrid EnKF-variational system [which we refer to as the hybrid gain ensemble data assimilation (HG-EnDA)] is capable of significantly outperforming both component systems. The HG-EnDA has been implemented with relatively little effort following Penny's recent study. Results of numerical experimentation comparing the HG-EnDA with the hybrid 4DVar-EDA used operationally at ECMWF are presented, together with diagnostic results, which help characterize the behavior of the proposed ensemble data assimilation system. A discussion of these results in the context of hybrid data assimilation in global NWP is also provided.
ISSN:0027-0644
1520-0493
DOI:10.1175/MWR-D-15-0071.1