Dewatering of source-separated human urine for nitrogen recovery by membrane distillation
The nitrogen content of a synthetic ammonia wastewater was concentrated using direct contact membrane distillation (DCMD). The ratio of transferred ammonia to water (i.e., specific ammonia transfer: SAT) was controlled by operational conditions. With 20°C on the permeate side, and a high temperature...
Gespeichert in:
Veröffentlicht in: | Journal of membrane science 2016-08, Vol.512, p.13-20 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The nitrogen content of a synthetic ammonia wastewater was concentrated using direct contact membrane distillation (DCMD). The ratio of transferred ammonia to water (i.e., specific ammonia transfer: SAT) was controlled by operational conditions. With 20°C on the permeate side, and a high temperature of 70°C on the feed side, the process exhibited low SAT values for PTFE/PP (PTF045LD0A), PTFE/PP (TF-450), and PVDF (HVHP-14250) membranes. This was because the increase in water flux (>24L/m2h) was greater than that of ammonia transfer. A positive relationship between SAT and free ammonia concentration was identified under different total ammoniacal nitrogen concentration and pH. The acidification pretreatment to pH 5 led to further reduction in the SAT value (as low as 6.91×10−5g-N/g-H2O). As a practical application, the dewatering process of source-separated human urine by DCMD required an additional filtration step to prevent fouling, but the filtration had an insignificant effect on the SAT. For the acidified and filtered source-separated human urine, total ammoniacal nitrogen was successfully concentrated with a low SAT value ( |
---|---|
ISSN: | 0376-7388 1873-3123 |
DOI: | 10.1016/j.memsci.2016.04.004 |