Lunar phase function at 1064 nm from Lunar Orbiter Laser Altimeter passive and active radiometry
•LOLA passive and active radiometry measure the phase function at all phase angles.•The 1064 nm phase function depends primarily on FeO and exposure age.•UV-VIS trend of decreasing opposition effect amplitude continues to the near-IR.•Phase function variations observed in impact melt deposit around...
Gespeichert in:
Veröffentlicht in: | Icarus (New York, N.Y. 1962) N.Y. 1962), 2016-07, Vol.273, p.96-113 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •LOLA passive and active radiometry measure the phase function at all phase angles.•The 1064 nm phase function depends primarily on FeO and exposure age.•UV-VIS trend of decreasing opposition effect amplitude continues to the near-IR.•Phase function variations observed in impact melt deposit around Jackson crater.•Reiner Gamma’s phase function is atypical for its FeO, TiO2, and OMAT.
We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be ∼5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function’s dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2), surface roughness on decimeter to decameter scales, and soil thermophysical properties have a smaller effect, but the latter two are correlated with OMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at ∼300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (OE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and OMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition and OMAT, suggesting the visible-to-near-infrared spectrum and phase function respond differently to the unusual regolith evolutio |
---|---|
ISSN: | 0019-1035 1090-2643 |
DOI: | 10.1016/j.icarus.2016.02.008 |