The Application of Light Research Aircraft for the Investigation of Volcano Eruption Plumes, Industrial Emissions and Urban Plumes

Airborne measurements have proved to be an important tool for the investigation of volcanic emission plumes, industrial pollution plumes, fugitive emissions and urban pollution plumes. In this paper several examples are demonstrated, how these investigations can be performed by light and microlight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:WSEAS Transactions on Environment and Development 2015-01, Vol.11, p.89-94
Hauptverfasser: Weber, Konradin, Fischer, Christian, Pohl, Tobias, Bohlke, Christoph, Lange, Martin, Scharifi, Emad, Eliasson, Jonas, Yoshitani, Junichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Airborne measurements have proved to be an important tool for the investigation of volcanic emission plumes, industrial pollution plumes, fugitive emissions and urban pollution plumes. In this paper several examples are demonstrated, how these investigations can be performed by light and microlight propeller aircraft. Throughout the last years innovative aircraft were developed.in the light and microlight class showing an excellent flight performance. This enables airborne measurements, which were performed in former years normally by big jet engine driven research aircraft. Moreover, these light and microlight aircraft are equipped with piston motors, which are sturdy enough to operate even in adverse and harsh flight conditions, e.g. in volcanic plumes with high ash concentration. Additionally, turbo charged versions of these airborne piston motors are available, which allow flight altitudes of 7000m - 9000m enabling a large variety of research missions. Another advantage of light and microlight research aircraft is that they are quite cost effective and have a comparatively short certification process for the installation of new measurement equipment. This made it possible to respond fast to the eruption of the Icelandic volcano Eyjafjallaj?kull 2010 and Grimsv?tn 2011 with research flights in volcanic ash plumes over Germany and Iceland. In this way it was possible to deliver real airborne measurements additional to the ash plume model calculations of the London Volcanic Ash Advisory Center (VAAC). In this paper examples of airborne measurements in the volcanic plumes of the recent eruptions of Icelandic volcanoes are given. Moreover examples are presented, which highlight the outstanding capabilities of these aircraft for pinpointing industrial emissions and for characterizing urban pollution plumes.
ISSN:1790-5079
2224-3496