Axial capacity evaluation for typical suspended ceiling joints

In recent earthquakes, the failure of nonstructural elements, including ceiling systems, has resulted in costly damage, inoperable buildings, and endangered lives. Therefore, the need to understand how ceiling systems perform during an earthquake is becoming increasingly important. However, few stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthquake spectra 2016-02, Vol.32 (1), p.547-565
Hauptverfasser: Soroushian, Siavash, Maragakis, Manos, Jenkins, Craig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent earthquakes, the failure of nonstructural elements, including ceiling systems, has resulted in costly damage, inoperable buildings, and endangered lives. Therefore, the need to understand how ceiling systems perform during an earthquake is becoming increasingly important. However, few studies have been conducted on suspension ceiling systems to identify where they are vulnerable. A series of suspension-ceiling component experiments were designed at the University of Nevada, Reno, using interlocking grid members, including 2-ft. and 4-ft. cross tees. The test specimens were first subjected to monotonic and cyclic loading to obtain their failure capacities. Then several axial capacity fragility curves (not the seismic fragility curves of ceiling systems) were developed based on axial displacement capacities as well as strength capacities of interlocking ceiling joints in the absence of ceiling panels. Besides the experimental studies, a series of analytical models for ceiling joints were developed and validated using component experimental data.
ISSN:8755-2930
1944-8201
DOI:10.1193/123113EQS301M