Cauchy problems for Lorentzian manifolds with special holonomy

On a Lorentzian manifold the existence of a parallel null vector field implies certain constraint conditions on the induced Riemannian geometry of a space-like hypersurface. We will derive these constraint conditions and, conversely, show that every real analytic Riemannian manifold satisfying the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications 2016-04, Vol.45, p.43-66
Hauptverfasser: Baum, Helga, Leistner, Thomas, Lischewski, Andree
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On a Lorentzian manifold the existence of a parallel null vector field implies certain constraint conditions on the induced Riemannian geometry of a space-like hypersurface. We will derive these constraint conditions and, conversely, show that every real analytic Riemannian manifold satisfying the constraint conditions can be extended to a Lorentzian manifold with a parallel null vector. Similarly, every parallel null spinor on a Lorentzian manifold induces a generalised imaginary Killing spinor on a space-like hypersurface. Then, using the fact that a parallel spinor field induces a parallel vector field, we can apply the first result to prove: every real analytic Riemannian manifold carrying a real analytic, imaginary generalised Killing spinor can be extended to a Lorentzian manifold with a parallel null spinor. Finally, we give examples of geodesically complete Riemannian manifolds satisfying the constraint conditions.
ISSN:0926-2245
1872-6984
DOI:10.1016/j.difgeo.2015.11.007