Cauchy problems for Lorentzian manifolds with special holonomy
On a Lorentzian manifold the existence of a parallel null vector field implies certain constraint conditions on the induced Riemannian geometry of a space-like hypersurface. We will derive these constraint conditions and, conversely, show that every real analytic Riemannian manifold satisfying the c...
Gespeichert in:
Veröffentlicht in: | Differential geometry and its applications 2016-04, Vol.45, p.43-66 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On a Lorentzian manifold the existence of a parallel null vector field implies certain constraint conditions on the induced Riemannian geometry of a space-like hypersurface. We will derive these constraint conditions and, conversely, show that every real analytic Riemannian manifold satisfying the constraint conditions can be extended to a Lorentzian manifold with a parallel null vector. Similarly, every parallel null spinor on a Lorentzian manifold induces a generalised imaginary Killing spinor on a space-like hypersurface. Then, using the fact that a parallel spinor field induces a parallel vector field, we can apply the first result to prove: every real analytic Riemannian manifold carrying a real analytic, imaginary generalised Killing spinor can be extended to a Lorentzian manifold with a parallel null spinor. Finally, we give examples of geodesically complete Riemannian manifolds satisfying the constraint conditions. |
---|---|
ISSN: | 0926-2245 1872-6984 |
DOI: | 10.1016/j.difgeo.2015.11.007 |