Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control
A local convergence rate is established for an orthogonal collocation method based on Gauss quadrature applied to an unconstrained optimal control problem. If the continuous problem has a smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2016-06, Vol.169 (3), p.801-824 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A local convergence rate is established for an orthogonal collocation method based on Gauss quadrature applied to an unconstrained optimal control problem. If the continuous problem has a smooth solution and the Hamiltonian satisfies a strong convexity condition, then the discrete problem possesses a local minimizer in a neighborhood of the continuous solution, and as the number of collocation points increases, the discrete solution converges to the continuous solution at the collocation points, exponentially fast in the sup-norm. Numerical examples illustrating the convergence theory are provided. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-016-0929-7 |