Rank estimation for the functional linear model

This article discusses the estimation of the parameter function for a functional linear regression model under heavy-tailed errors' distributions and in the presence of outliers. Standard approaches of reducing the high dimensionality, which is inherent in functional data, are considered. After...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics 2016-07, Vol.43 (10), p.1928-1944
Hauptverfasser: Denhere, Melody, Bindele, Huybrechts F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article discusses the estimation of the parameter function for a functional linear regression model under heavy-tailed errors' distributions and in the presence of outliers. Standard approaches of reducing the high dimensionality, which is inherent in functional data, are considered. After reducing the functional model to a standard multiple linear regression model, a weighted rank-based procedure is carried out to estimate the regression parameters. A Monte Carlo simulation and a real-world example are used to show the performance of the proposed estimator and a comparison made with the least-squares and least absolute deviation estimators.
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2015.1125863