Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation

We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis aniso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-04, Vol.93 (14), Article 144416
Hauptverfasser: Benguria, R. D., Depassier, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 14
container_start_page
container_title Physical review. B
container_volume 93
creator Benguria, R. D.
Depassier, M. C.
description We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence.
doi_str_mv 10.1103/PhysRevB.93.144416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815995267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815995267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7d71790a8ce9133eeab6fda64430400c17d5a3829104b33049884976161152533</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EEhX0B5g8sqT4xY4Tj1BBQaoEKiBGy3UcxeDErZ2AwteTtsD0rp7OvcNB6ALIDIDQq6d6iCvzeTMTdAaMMeBHaJIyLhIhuDj-zxk5RdMY3wkhwInIiZigbmWU7qxvcWmrqo_7NLSqsTpi1Za4qw1-1nUYTEjelPswAUfv-n2l8gGXvlG2xV_KuYh9teeXY1H1ydJWsbbdd7Kwbm1Ch822V7viOTqplItm-nvP0Ovd7cv8Plk-Lh7m18tE05R1SV7mkAuiCm0EUGqMWvOqVJwxShghGvIyU7RIBRC2puNPFAUTOQcOkKUZpWfo8rC7CX7bm9jJxkZtnFOt8X2UUEA2akl5PqLpAdXBxxhMJTfBNioMEojcWZZ_lqWg8mCZ_gDL5nIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815995267</pqid></control><display><type>article</type><title>Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation</title><source>American Physical Society Journals</source><creator>Benguria, R. D. ; Depassier, M. C.</creator><creatorcontrib>Benguria, R. D. ; Depassier, M. C.</creatorcontrib><description>We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.144416</identifier><language>eng</language><subject>Anisotropy ; Condensed matter ; Diffusion ; Domain walls ; Dynamic tests ; Dynamics ; Exact solutions ; Mathematical analysis</subject><ispartof>Physical review. B, 2016-04, Vol.93 (14), Article 144416</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7d71790a8ce9133eeab6fda64430400c17d5a3829104b33049884976161152533</citedby><cites>FETCH-LOGICAL-c324t-7d71790a8ce9133eeab6fda64430400c17d5a3829104b33049884976161152533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids></links><search><creatorcontrib>Benguria, R. D.</creatorcontrib><creatorcontrib>Depassier, M. C.</creatorcontrib><title>Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation</title><title>Physical review. B</title><description>We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence.</description><subject>Anisotropy</subject><subject>Condensed matter</subject><subject>Diffusion</subject><subject>Domain walls</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAURS0EEhX0B5g8sqT4xY4Tj1BBQaoEKiBGy3UcxeDErZ2AwteTtsD0rp7OvcNB6ALIDIDQq6d6iCvzeTMTdAaMMeBHaJIyLhIhuDj-zxk5RdMY3wkhwInIiZigbmWU7qxvcWmrqo_7NLSqsTpi1Za4qw1-1nUYTEjelPswAUfv-n2l8gGXvlG2xV_KuYh9teeXY1H1ydJWsbbdd7Kwbm1Ch822V7viOTqplItm-nvP0Ovd7cv8Plk-Lh7m18tE05R1SV7mkAuiCm0EUGqMWvOqVJwxShghGvIyU7RIBRC2puNPFAUTOQcOkKUZpWfo8rC7CX7bm9jJxkZtnFOt8X2UUEA2akl5PqLpAdXBxxhMJTfBNioMEojcWZZ_lqWg8mCZ_gDL5nIg</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Benguria, R. D.</creator><creator>Depassier, M. C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160421</creationdate><title>Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation</title><author>Benguria, R. D. ; Depassier, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7d71790a8ce9133eeab6fda64430400c17d5a3829104b33049884976161152533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Condensed matter</topic><topic>Diffusion</topic><topic>Domain walls</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benguria, R. D.</creatorcontrib><creatorcontrib>Depassier, M. C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benguria, R. D.</au><au>Depassier, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation</atitle><jtitle>Physical review. B</jtitle><date>2016-04-21</date><risdate>2016</risdate><volume>93</volume><issue>14</issue><artnum>144416</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence.</abstract><doi>10.1103/PhysRevB.93.144416</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-04, Vol.93 (14), Article 144416
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_miscellaneous_1815995267
source American Physical Society Journals
subjects Anisotropy
Condensed matter
Diffusion
Domain walls
Dynamic tests
Dynamics
Exact solutions
Mathematical analysis
title Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20diffusion%20dynamics%20and%20the%20Schryer-Walker%20solution%20for%20domain%20walls%20of%20the%20Landau-Lifshitz-Gilbert%20equation&rft.jtitle=Physical%20review.%20B&rft.au=Benguria,%20R.%20D.&rft.date=2016-04-21&rft.volume=93&rft.issue=14&rft.artnum=144416&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.144416&rft_dat=%3Cproquest_cross%3E1815995267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815995267&rft_id=info:pmid/&rfr_iscdi=true