Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation
We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis aniso...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-04, Vol.93 (14), Article 144416 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | |
container_title | Physical review. B |
container_volume | 93 |
creator | Benguria, R. D. Depassier, M. C. |
description | We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence. |
doi_str_mv | 10.1103/PhysRevB.93.144416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815995267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815995267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7d71790a8ce9133eeab6fda64430400c17d5a3829104b33049884976161152533</originalsourceid><addsrcrecordid>eNo9kLFOwzAURS0EEhX0B5g8sqT4xY4Tj1BBQaoEKiBGy3UcxeDErZ2AwteTtsD0rp7OvcNB6ALIDIDQq6d6iCvzeTMTdAaMMeBHaJIyLhIhuDj-zxk5RdMY3wkhwInIiZigbmWU7qxvcWmrqo_7NLSqsTpi1Za4qw1-1nUYTEjelPswAUfv-n2l8gGXvlG2xV_KuYh9teeXY1H1ydJWsbbdd7Kwbm1Ch822V7viOTqplItm-nvP0Ovd7cv8Plk-Lh7m18tE05R1SV7mkAuiCm0EUGqMWvOqVJwxShghGvIyU7RIBRC2puNPFAUTOQcOkKUZpWfo8rC7CX7bm9jJxkZtnFOt8X2UUEA2akl5PqLpAdXBxxhMJTfBNioMEojcWZZ_lqWg8mCZ_gDL5nIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815995267</pqid></control><display><type>article</type><title>Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation</title><source>American Physical Society Journals</source><creator>Benguria, R. D. ; Depassier, M. C.</creator><creatorcontrib>Benguria, R. D. ; Depassier, M. C.</creatorcontrib><description>We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.144416</identifier><language>eng</language><subject>Anisotropy ; Condensed matter ; Diffusion ; Domain walls ; Dynamic tests ; Dynamics ; Exact solutions ; Mathematical analysis</subject><ispartof>Physical review. B, 2016-04, Vol.93 (14), Article 144416</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7d71790a8ce9133eeab6fda64430400c17d5a3829104b33049884976161152533</citedby><cites>FETCH-LOGICAL-c324t-7d71790a8ce9133eeab6fda64430400c17d5a3829104b33049884976161152533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27903,27904</link.rule.ids></links><search><creatorcontrib>Benguria, R. D.</creatorcontrib><creatorcontrib>Depassier, M. C.</creatorcontrib><title>Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation</title><title>Physical review. B</title><description>We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence.</description><subject>Anisotropy</subject><subject>Condensed matter</subject><subject>Diffusion</subject><subject>Domain walls</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAURS0EEhX0B5g8sqT4xY4Tj1BBQaoEKiBGy3UcxeDErZ2AwteTtsD0rp7OvcNB6ALIDIDQq6d6iCvzeTMTdAaMMeBHaJIyLhIhuDj-zxk5RdMY3wkhwInIiZigbmWU7qxvcWmrqo_7NLSqsTpi1Za4qw1-1nUYTEjelPswAUfv-n2l8gGXvlG2xV_KuYh9teeXY1H1ydJWsbbdd7Kwbm1Ch822V7viOTqplItm-nvP0Ovd7cv8Plk-Lh7m18tE05R1SV7mkAuiCm0EUGqMWvOqVJwxShghGvIyU7RIBRC2puNPFAUTOQcOkKUZpWfo8rC7CX7bm9jJxkZtnFOt8X2UUEA2akl5PqLpAdXBxxhMJTfBNioMEojcWZZ_lqWg8mCZ_gDL5nIg</recordid><startdate>20160421</startdate><enddate>20160421</enddate><creator>Benguria, R. D.</creator><creator>Depassier, M. C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160421</creationdate><title>Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation</title><author>Benguria, R. D. ; Depassier, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7d71790a8ce9133eeab6fda64430400c17d5a3829104b33049884976161152533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anisotropy</topic><topic>Condensed matter</topic><topic>Diffusion</topic><topic>Domain walls</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benguria, R. D.</creatorcontrib><creatorcontrib>Depassier, M. C.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benguria, R. D.</au><au>Depassier, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation</atitle><jtitle>Physical review. B</jtitle><date>2016-04-21</date><risdate>2016</risdate><volume>93</volume><issue>14</issue><artnum>144416</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence.</abstract><doi>10.1103/PhysRevB.93.144416</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-04, Vol.93 (14), Article 144416 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_miscellaneous_1815995267 |
source | American Physical Society Journals |
subjects | Anisotropy Condensed matter Diffusion Domain walls Dynamic tests Dynamics Exact solutions Mathematical analysis |
title | Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20diffusion%20dynamics%20and%20the%20Schryer-Walker%20solution%20for%20domain%20walls%20of%20the%20Landau-Lifshitz-Gilbert%20equation&rft.jtitle=Physical%20review.%20B&rft.au=Benguria,%20R.%20D.&rft.date=2016-04-21&rft.volume=93&rft.issue=14&rft.artnum=144416&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.144416&rft_dat=%3Cproquest_cross%3E1815995267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815995267&rft_id=info:pmid/&rfr_iscdi=true |