Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation
We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis aniso...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-04, Vol.93 (14), Article 144416 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.93.144416 |