Reaction diffusion dynamics and the Schryer-Walker solution for domain walls of the Landau-Lifshitz-Gilbert equation

We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis aniso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-04, Vol.93 (14), Article 144416
Hauptverfasser: Benguria, R. D., Depassier, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the dynamics of the equation obtained by Schryer and Walker for the motion of domain walls. The reduced equation is a reaction diffusion equation for the angle between the applied field and the magnetization vector. If the hard-axis anisotropy K sub()dis much larger than the easy-axis anisotropy K sub(u), there is a range of applied fields where the dynamics does not select the Schryer-Walker solution. We give an analytic expression for the speed of the domain wall in this regime and the conditions for its existence.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.93.144416