Integrated air stripping and non-thermal plasma system for the treatment of volatile organic compounds from wastewater: statistical optimization
This study examined the treatment of toluene and m-xylene from wastewater using integrated air stripping and non-thermal plasma (NTP) reactor system. Toluene and m-xylene concentrations, before and after plasma treatment, were determined using Fourier transform infrared spectroscopy. The performance...
Gespeichert in:
Veröffentlicht in: | Desalination and water treatment 2016-07, Vol.57 (34), p.16066-16077 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study examined the treatment of toluene and m-xylene from wastewater using integrated air stripping and non-thermal plasma (NTP) reactor system. Toluene and m-xylene concentrations, before and after plasma treatment, were determined using Fourier transform infrared spectroscopy. The performance of the NTP reactor was optimized using the central composite design of the response surface methodology. The optimum discharge gap, applied voltage, and flow rate for the decomposition were found to be 22.34 mm, 15 kV, 3.56 L/min and 20.10 mm, 15 kV, 3.34 L/min for toluene and m-xylene, respectively. Experimental removal efficiencies and model predictions were in close agreement with 1.25 and 2.16% errors for toluene and m-xylene, respectively. The developed model could fit the experimental data with acceptable values of percentage errors. |
---|---|
ISSN: | 1944-3986 1944-3994 1944-3986 |
DOI: | 10.1080/19443994.2015.1076353 |