Three-dimensional superintegrable systems in a static electromagnetic field

We consider a charged particle moving in a static electromagnetic field described by the vector potential and the electrostatic potential We study the conditions on the structure of the integrals of motion of the first and second order in momenta, in particular how they are influenced by the gauge i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2015-10, Vol.48 (39), p.395206-24
Hauptverfasser: Marchesiello, A, Šnobl, L, Winternitz, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 39
container_start_page 395206
container_title Journal of physics. A, Mathematical and theoretical
container_volume 48
creator Marchesiello, A
Šnobl, L
Winternitz, P
description We consider a charged particle moving in a static electromagnetic field described by the vector potential and the electrostatic potential We study the conditions on the structure of the integrals of motion of the first and second order in momenta, in particular how they are influenced by the gauge invariance of the problem. Next, we concentrate on the three possibilities for integrability arising from the first order integrals corresponding to three nonequivalent subalgebras of the Euclidean algebra, namely and For these cases we look for additional independent integrals of first or second order in the momenta. These would make the system superintegrable (minimally or maximally). We study their quantum spectra and classical equations of motion. In some cases nonpolynomial integrals of motion occur and ensure maximal superintegrability.
doi_str_mv 10.1088/1751-8113/48/39/395206
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815986793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815986793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-cca6b1d0958b06bc2fe49f7e9ea231d80a7eb72a22ad3f1056b2bc1e86c1302a3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwF1CPXMripB_JEU18iUlcxjlKU3dk6hdxe9i_p1UnrkiWbMvv48PD2D3wR-BKbSBPIVYAcpOojdRTpYJnF2x1Pgi4_JtBXrMboiPnacK1WLGP_XdAjEvfYEu-a20d0dhj8O2Ah2CLGiM60YANRb6NbESDHbyLsEY3hK6xhxbnvfJYl7fsqrI14d25r9nXy_N--xbvPl_ft0-72MlcD7FzNiug5DpVBc8KJypMdJWjRisklIrbHItcWCFsKSvgaVaIwgGqzIHkwso1e1j-9qH7GZEG03hyWNe2xW4kAwpSrbJcyymaLVEXOqKAlemDb2w4GeBmtmdmMWYWYxJlpDaLvQkUC-i73hy7MUxm6D_oF5XDcsk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815986793</pqid></control><display><type>article</type><title>Three-dimensional superintegrable systems in a static electromagnetic field</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Marchesiello, A ; Šnobl, L ; Winternitz, P</creator><creatorcontrib>Marchesiello, A ; Šnobl, L ; Winternitz, P</creatorcontrib><description>We consider a charged particle moving in a static electromagnetic field described by the vector potential and the electrostatic potential We study the conditions on the structure of the integrals of motion of the first and second order in momenta, in particular how they are influenced by the gauge invariance of the problem. Next, we concentrate on the three possibilities for integrability arising from the first order integrals corresponding to three nonequivalent subalgebras of the Euclidean algebra, namely and For these cases we look for additional independent integrals of first or second order in the momenta. These would make the system superintegrable (minimally or maximally). We study their quantum spectra and classical equations of motion. In some cases nonpolynomial integrals of motion occur and ensure maximal superintegrability.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/48/39/395206</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Algebra ; classical and quantum mechanics ; Electromagnetic fields ; Equations of motion ; Gauge invariance ; integrability ; Integrals ; magnetic field ; Mathematical analysis ; Spectra ; superintegrability ; Three dimensional</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2015-10, Vol.48 (39), p.395206-24</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-cca6b1d0958b06bc2fe49f7e9ea231d80a7eb72a22ad3f1056b2bc1e86c1302a3</citedby><cites>FETCH-LOGICAL-c379t-cca6b1d0958b06bc2fe49f7e9ea231d80a7eb72a22ad3f1056b2bc1e86c1302a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8113/48/39/395206/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,53827,53874</link.rule.ids></links><search><creatorcontrib>Marchesiello, A</creatorcontrib><creatorcontrib>Šnobl, L</creatorcontrib><creatorcontrib>Winternitz, P</creatorcontrib><title>Three-dimensional superintegrable systems in a static electromagnetic field</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>We consider a charged particle moving in a static electromagnetic field described by the vector potential and the electrostatic potential We study the conditions on the structure of the integrals of motion of the first and second order in momenta, in particular how they are influenced by the gauge invariance of the problem. Next, we concentrate on the three possibilities for integrability arising from the first order integrals corresponding to three nonequivalent subalgebras of the Euclidean algebra, namely and For these cases we look for additional independent integrals of first or second order in the momenta. These would make the system superintegrable (minimally or maximally). We study their quantum spectra and classical equations of motion. In some cases nonpolynomial integrals of motion occur and ensure maximal superintegrability.</description><subject>Algebra</subject><subject>classical and quantum mechanics</subject><subject>Electromagnetic fields</subject><subject>Equations of motion</subject><subject>Gauge invariance</subject><subject>integrability</subject><subject>Integrals</subject><subject>magnetic field</subject><subject>Mathematical analysis</subject><subject>Spectra</subject><subject>superintegrability</subject><subject>Three dimensional</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwF1CPXMripB_JEU18iUlcxjlKU3dk6hdxe9i_p1UnrkiWbMvv48PD2D3wR-BKbSBPIVYAcpOojdRTpYJnF2x1Pgi4_JtBXrMboiPnacK1WLGP_XdAjEvfYEu-a20d0dhj8O2Ah2CLGiM60YANRb6NbESDHbyLsEY3hK6xhxbnvfJYl7fsqrI14d25r9nXy_N--xbvPl_ft0-72MlcD7FzNiug5DpVBc8KJypMdJWjRisklIrbHItcWCFsKSvgaVaIwgGqzIHkwso1e1j-9qH7GZEG03hyWNe2xW4kAwpSrbJcyymaLVEXOqKAlemDb2w4GeBmtmdmMWYWYxJlpDaLvQkUC-i73hy7MUxm6D_oF5XDcsk</recordid><startdate>20151002</startdate><enddate>20151002</enddate><creator>Marchesiello, A</creator><creator>Šnobl, L</creator><creator>Winternitz, P</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151002</creationdate><title>Three-dimensional superintegrable systems in a static electromagnetic field</title><author>Marchesiello, A ; Šnobl, L ; Winternitz, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-cca6b1d0958b06bc2fe49f7e9ea231d80a7eb72a22ad3f1056b2bc1e86c1302a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>classical and quantum mechanics</topic><topic>Electromagnetic fields</topic><topic>Equations of motion</topic><topic>Gauge invariance</topic><topic>integrability</topic><topic>Integrals</topic><topic>magnetic field</topic><topic>Mathematical analysis</topic><topic>Spectra</topic><topic>superintegrability</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchesiello, A</creatorcontrib><creatorcontrib>Šnobl, L</creatorcontrib><creatorcontrib>Winternitz, P</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchesiello, A</au><au>Šnobl, L</au><au>Winternitz, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional superintegrable systems in a static electromagnetic field</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2015-10-02</date><risdate>2015</risdate><volume>48</volume><issue>39</issue><spage>395206</spage><epage>24</epage><pages>395206-24</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>We consider a charged particle moving in a static electromagnetic field described by the vector potential and the electrostatic potential We study the conditions on the structure of the integrals of motion of the first and second order in momenta, in particular how they are influenced by the gauge invariance of the problem. Next, we concentrate on the three possibilities for integrability arising from the first order integrals corresponding to three nonequivalent subalgebras of the Euclidean algebra, namely and For these cases we look for additional independent integrals of first or second order in the momenta. These would make the system superintegrable (minimally or maximally). We study their quantum spectra and classical equations of motion. In some cases nonpolynomial integrals of motion occur and ensure maximal superintegrability.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8113/48/39/395206</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2015-10, Vol.48 (39), p.395206-24
issn 1751-8113
1751-8121
language eng
recordid cdi_proquest_miscellaneous_1815986793
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Algebra
classical and quantum mechanics
Electromagnetic fields
Equations of motion
Gauge invariance
integrability
Integrals
magnetic field
Mathematical analysis
Spectra
superintegrability
Three dimensional
title Three-dimensional superintegrable systems in a static electromagnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20superintegrable%20systems%20in%20a%20static%20electromagnetic%20field&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Marchesiello,%20A&rft.date=2015-10-02&rft.volume=48&rft.issue=39&rft.spage=395206&rft.epage=24&rft.pages=395206-24&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8113/48/39/395206&rft_dat=%3Cproquest_cross%3E1815986793%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815986793&rft_id=info:pmid/&rfr_iscdi=true