Three-dimensional superintegrable systems in a static electromagnetic field
We consider a charged particle moving in a static electromagnetic field described by the vector potential and the electrostatic potential We study the conditions on the structure of the integrals of motion of the first and second order in momenta, in particular how they are influenced by the gauge i...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2015-10, Vol.48 (39), p.395206-24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a charged particle moving in a static electromagnetic field described by the vector potential and the electrostatic potential We study the conditions on the structure of the integrals of motion of the first and second order in momenta, in particular how they are influenced by the gauge invariance of the problem. Next, we concentrate on the three possibilities for integrability arising from the first order integrals corresponding to three nonequivalent subalgebras of the Euclidean algebra, namely and For these cases we look for additional independent integrals of first or second order in the momenta. These would make the system superintegrable (minimally or maximally). We study their quantum spectra and classical equations of motion. In some cases nonpolynomial integrals of motion occur and ensure maximal superintegrability. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/48/39/395206 |