Extended Canonical Variates Analysis for Wine Origin Discrimination by Using Infrared Spectroscopy

An extended canonical variates analysis (ECVA) method dealing with multicollinear data of infrared spectrum and a singular within-group covariance matrix is proposed for wine origin discrimination. The wine-origin is classified by infrared spectrum and the chemometrics methods. Comparing the classif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry letters 2016-05, Vol.45 (5), p.564-566
Hauptverfasser: Zhou, Yang, Chen, Zhengwei, Liu, Tiebing, Mao, Jianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An extended canonical variates analysis (ECVA) method dealing with multicollinear data of infrared spectrum and a singular within-group covariance matrix is proposed for wine origin discrimination. The wine-origin is classified by infrared spectrum and the chemometrics methods. Comparing the classification results of the k-nearest neighbor algorithm (KNN), partial least-squares discriminant analysis (PLS-DA), and principal component analysis (PCA) methods, the ECVA-KNN method reaches the optimal correctness of 97.73%. The experiment results prove that the ECVA method is fit for wine origin discrimination and can be effectively applied to the qualitative analysis of the collinear infrared spectrum.
ISSN:0366-7022
1348-0715
DOI:10.1246/cl.160135