Potential impact of a ventilation intervention for influenza in the context of a dense indoor contact network in Hong Kong

Emerging diseases may spread rapidly through dense and large urban contact networks. We constructed a simple but novel dual-contact network model to account for both airborne contact and close contact of individuals in the densely populated city of Hong Kong. The model was then integrated with an ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2016-11, Vol.569-570, p.373-381
Hauptverfasser: Gao, Xiaolei, Wei, Jianjian, Cowling, Benjamin J., Li, Yuguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging diseases may spread rapidly through dense and large urban contact networks. We constructed a simple but novel dual-contact network model to account for both airborne contact and close contact of individuals in the densely populated city of Hong Kong. The model was then integrated with an existing epidemiological susceptible-exposed-infectious-recovered (SEIR) model, and we used a revised Wells-Riley model to estimate infection risks by the airborne route and an exponential dose-response model for risks by the contact and droplet routes. A potential outbreak of partially airborne influenza was examined, assuming different proportions of transmission through the airborne route. Our results show that building ventilation can have significant effects in airborne transmission-dominated conditions. Moreover, even when the airborne route only contributes 20% to the total infection risk, increasing the ventilation rate has a strong influence on transmission dynamics, and it also can achieve control effects similar to those of wearing masks for patients, isolation and vaccination. [Display omitted] •A dual-contact (close contact and airborne contact) network was constructed.•Effect of control strategies was evaluated at the community level.•Important role of building ventilation in influenza control was revealed.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2016.06.179